
L A N G U A G E S A N D S Y S T E M S TO

DEMOCRAT IZE DEVELOPMENT
OF DATA-DRIVEN WEB APPLICAT IONS

by
Michailia Verou

B.S., Athens University of Economics and Business (2013)
S.M., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 2024

© 2024 Michailia Verou. License: CC BY-NC-SA 4.0
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license

to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

AUTH O R E D BY Michailia Verou
Department of Electrical Engineering and Computer Science
August 29, 2024

C E R T I F I E D BY David R. Karger
Professor of Electrical Engineering and Computer Science

A C C E P T E D BY Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

https://lea.verou.me/
https://creativecommons.org/licenses/by-nc-sa/4.0/

2 /324

Languages and Systems to Democratize
Development of Data-Driven Web Applications

by
Michailia Verou

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2024, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract
A cornucopia of systems exist to facilitate web application creation, yet most are either
too complex for novices, or too limited to cater to people’s diverse needs. This work
explores avenues to better balance the tradeoffs between complexity and expressiveness.

A focus of this work is the Mavo language, a modular set of technologies that enables
authors with basic HTML knowledge to rapidly transform a static HTML mockup into
a fully-functional, persistent, data-driven web application. Mavo HTML makes schema
creation implicit, and generates high fidelity direct manipulation interfaces for editing
data. It provides reactive computation via Formula², a hierarchical reactive expression lan‐
guage for novices, and remote persistence via Madata, a design and protocol for a dis‐
tributed authentication and storage ecosystem with a unified API. Lastly, it extends the
reactive paradigm with data update actions, allowing users to add interactivity or auto‐
mate repetitive tasks. We later explored exposing these concepts to end-users via
Lifesheets, a domain-specific prototype visual app builder geared around one of the most
common personal data management use cases: personal tracking.

Unlike platform-based “low-code/no-code” approaches, extending open web technologies
provides universal, portable, decentralized solutions. Our studies show novices quickly
learn these technologies and feel empowered to create tools they never thought possible.
By lowering the barrier of web programming, I envision a future where end-users feel
empowered to create tools for their needs, while maintaining agency over their data and
its location, in line with the Web’s original vision: “This is for everyone”.

Thesis supervisor: David R. Karger
Title: Professor of Electrical Engineering and Computer Science

3 /324

https://lea.verou.me/

4 /324

M
A
R
IA
V
ER

OU

ZOE
LILLEY

-V
E
R
O
U

Acknowledgements
They say that raising a child takes a village. Having some experience with both, I would
assert that so does a doctorate. This has been a very long journey and I could not have
done it without the love, help, and support of so many.

This thesis is dedicated to the two women who made it possible: the one I succeeded and
the one who succeeds me.

The former is my mom Maria Verou, whose life inspired this journey, yet she never got
to see it. She was fearless, a genuine trailblazer. In 1976 — a time most Greek women did

not even go to college — she moved halfway across the
world to follow her dream of doing research at MIT. Her
groundbreaking research helped solve real problems, yet
she only published her work in her Master’s thesis [1] as
life forced her to return to Greece, cutting her PhD
short.

I grew up hearing her recount her years at MIT as
intense but also the most wonderful, most intellectually

stimulating time of her life, and as a little girl I dreamed of
following in her footsteps. For decades she longed to go back

and finish what she started but never took the leap again, until on January 4th, 2013, it
was finally too late. Shortly after, I uprooted my life and career to pursue my own dreams
of research — before I also ran out of time. As a tribute to her memory, the programming
language at the core of this thesis is named after her (Mavo = Maria Verou).

The latter is my daughter Zoe, who has been with me for half of
this journey. Through a strange turn of events, my pregnancy of
her saved my life, and thus without her this thesis would not
exist — as neither would I. Raising a child does make pursuing
a PhD harder, but also a lot more meaningful. I love you, Zoe.
Sorry for all the time I had to spend on this instead of playing
with you.

5 /324

http://localhost:8002/phd/sections/acknowledgements/#bib-verou_sea_1978

C
H
R
IS
LI
LL

EY

DAVID
K
A
R
G
E
R

S
A
M
M
A
D
DE

N
ARVIND SATYAN

A
R
A
Y
A
N

To my husband Chris, who has been my support system for almost
this entire journey. Thank you for moving halfway across the world
to be with me and being there for me through thick and thin. I love
you.

To my advisor, David Karger, in whom I found a
mentor and a friend. I would have never

reached the finish line without you. Thank you for
believing in me, treating me like an equal, for being there to guide
me when I needed you, and for giving me space and freedom when I
didn’t. You made me a researcher.

To my thesis committee members, Arvind
Satyanarayan and Sam Madden, for their patience, flexibility, valu‐
able feedback, guidance, and approachable demeanor. You made a very
stressful process a lot more bearable.

Haystackers past and present. From left to right: (a) Soya Park, Tarfah Alrashed, Farnaz Jahanbakhsh, and me, (b) Group
dinner at David’s house.

To my fellow Haystackers, past and present that we have spent time with: Eirik Bakke,
Amy X. Zhang, Farnaz Jahanbakhsh, Tarfah Alrashed, Nouran Soliman, Theia
Henderson, Luke Murray, Jumana Almahmoud, Soya Park. I already miss our office
laughs, impromptu brainstorming sessions, brunches, and surprise birthday parties.

Acknowledgements

6 /324

EI
R
IK
BA

KK
E

AM
Y X.

ZHANG

TA
R
FA
H
AL

RA
SH
ED

DM
ITRY

SHARABIN

B
A
R
IS
H
N
AM

AZ
OV

Eirik, thank you for welcoming me to the group, introducing me to the ins and
outs of grad school, for being such a fun officemate for my first two years, and
for always being willing to give (and take) feedback. And for SUS.

Amy, thank you for making the process of writing my first paper less
scary by being a fantastic co-author, for teaching me so much about academic
writing, and for being such a well-organized co-instructor for our class.

Tarfah, thank you for being one of the kindest, most giving people I
have ever met, a wonderful co-author, and a great friend.

To my mentees and students, who have taught me as much as I
have taught them, and especially Dmitry Sharabin, for being

Mavo’s biggest fan, a tireless maintainer for that and many related
projects, and a wonderful apprentice who has helped me immensely,
including on some of the typesetting of this thesis. You rarely find people
so eager to absorb knowledge, and it has been a pleasure seeing him grow
over the years. Also to Barish Namazov, who has been a great student and later TA, co-

author, and collaborator.

To my friends who provided the warmth of a family away from home, and the fun
that made all the hard work feel worth it.

Different subsets of the Warehouse People (WHP) over the years: (a) when we all started in 2014, (b) at my and Chris’
wedding in 2018, (c) at my birthday in Sirma’s yard in 2020.

I was so incredibly fortunate to meet some of them on the first few days, at MIT orienta‐
tion: Judith, Sirma, David, Viirj, Valerio, Thras, Lukas, Tal, Martin, Alexandros, Prashan,
aka The Warehouse People (WHP), from the MIT dorm many of us lived in during our
first year. Making such good friends so early on turned a scary experience into a fun
adventure that we all went through together. And we grew together too: we have now
been through each other’s thesis defenses, weddings, births, and many other life events,

Acknowledgements

7 /324

https://wh.mit.edu/

A
N
A
S
A
M
OL

OV FIL
IP C
UCKOV

happy and sad. At this point most of us have been scattered around the world, but when‐
ever we meet again, it feels like no time has passed.

Being so furtunate once was already unlikely, what are the odds
of being so fortunate twice? And yet, on our daughter’s first day
of school, we met our friends Ana and Filip who immediately
felt like long lost family to all of us, and their daughter Eva soon

became almost like a sister to Zoe. They have supported us through
health scares, deadlines, disappointments, and celebrations.

This thesis would not have been possible without funding sources from various fellow‐
ships and companies. I was fortunate to be the recipient of several fellowships (Paris
Kanellakis, George and Marie Vergottis, Thomas G. Stockham Jr) and I am grateful to
the families who set up these funds, and to MIT who selected me among hundreds of
other candidates. I would also like to thank Wistron Corporation and NSF for funding
parts of this work. It would also not have been possible without all the people who partic‐
ipated in my user studies and who sat down to be interviewed by me — thank you.

Last but not least, to Travis Chase and Dave Gandy for offering me a job so
exciting it gave me the strength to finally wrap this PhD up, spread my wings, and
leave MIT’s protective cocoon. Thank you for believing in me without expecting me
to jump through hoops like a circus animal. I can’t wait to start.

How lucky have I been. 

Acknowledgements

8 /324

9 /324

Contents
Online version: phd.verou.me

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction 211

Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard?Why Is Web Publishing Still Hard? 221.1

The Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application DevelopmentThe Mavo Ecosystem for Low-code Web Application Development 251.2

Lowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-UsersLowering the Threshold to End-Users 311.3

Design PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign PrinciplesDesign Principles 311.4

Thesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis OverviewThesis Overview 361.5

Background Background Background Background Background Background Background Background Background Background &&&&&&&&&& Related Work Related Work Related Work Related Work Related Work Related Work Related Work Related Work Related Work Related Work 382

Web Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing ToolsWeb Publishing Tools 382.1

Spreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet ExtensionsSpreadsheet Extensions 412.2

Do-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web ApplicationsDo-It-Yourself Database-driven Web Applications 422.3

WYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application BuildersWYSIWYG Application Builders 432.4

HTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application DevelopmentHTML Extensions for Web Application Development 442.5

The Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data ExtractionThe Semantic Web and Web Data Extraction 462.6

Novice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural ProgrammingNovice Mental Models & Natural Programming 472.7

Mavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTMLMavo: Creating web applications by authoring HTML 483

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction 483.1

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work 533.2

The Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo LanguageThe Mavo Language 553.3

ImplementationImplementationImplementationImplementationImplementationImplementationImplementationImplementationImplementationImplementation 663.4

DiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussion 693.5

Future WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture Work 723.6

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 733.7

10 /324

https://phd.verou.me/

Formula²:Formula²:Formula²:Formula²:Formula²:Formula²:Formula²:Formula²:Formula²:Formula²: A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language A Human-centric Hierarchical Formula Language 744

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction 754.1

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work 764.2

Syntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core ConceptsSyntax and Core Concepts 774.3

Core ContributionsCore ContributionsCore ContributionsCore ContributionsCore ContributionsCore ContributionsCore ContributionsCore ContributionsCore ContributionsCore Contributions 784.4

Detailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design DiscussionDetailed Design Discussion 814.5

ArchitectureArchitectureArchitectureArchitectureArchitectureArchitectureArchitectureArchitectureArchitectureArchitecture 894.6

Comparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other LanguagesComparison with Other Languages 924.7

Discussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future Work 1034.8

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 1074.9

Madata: Madata: Madata: Madata: Madata: Madata: Madata: Madata: Madata: Madata: Facilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data AccessFacilitating Data Ownership by Democratizing Data Access 1085

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction 1085.1

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work 1105.2

Main ConceptsMain ConceptsMain ConceptsMain ConceptsMain ConceptsMain ConceptsMain ConceptsMain ConceptsMain ConceptsMain Concepts 1115.3

Usage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage ExamplesUsage Examples 1175.4

ExtensibilityExtensibilityExtensibilityExtensibilityExtensibilityExtensibilityExtensibilityExtensibilityExtensibilityExtensibility 1205.5

DiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussionDiscussion 1235.6

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 1275.7

Extending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update Actions 1286

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction 1296.1

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work 1326.2

Mavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update LanguageMavo Data Update Language 1326.3

Example Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use CasesExample Use Cases 1366.4

Discussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future WorkDiscussion & Future Work 1426.5

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 1456.6

Contents

11 /324

Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation &&&&&&&&&& Evolution Evolution Evolution Evolution Evolution Evolution Evolution Evolution Evolution Evolution 1467

First Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo PrototypeFirst Lab Study: Mavo Prototype 1467.1

Second Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update ActionsSecond Lab Study - Formula² & Data Update Actions 1647.2

Mavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal InterviewsMavo in the Wild Informal Interviews 1827.3

Shapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIsShapir: Standardizing and Democratizing Web APIs 1837.4

Wikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that LinkWikxhibit: Using Mavo and Wikidata to Author Applications that Link
Data Across the WebData Across the WebData Across the WebData Across the WebData Across the WebData Across the WebData Across the WebData Across the WebData Across the WebData Across the Web 184

7.5

Lifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmersLifesheets: Exposing Mavo Concepts to Non-programmers 1867.6

Case StudiesCase StudiesCase StudiesCase StudiesCase StudiesCase StudiesCase StudiesCase StudiesCase StudiesCase Studies 1898

CRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD ApplicationsCRUD Applications 1898.1

Graphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics BuildersGraphics Builders 2068.2

Mavo GamesMavo GamesMavo GamesMavo GamesMavo GamesMavo GamesMavo GamesMavo GamesMavo GamesMavo Games 2148.3

Lifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self Applications 2209

Introduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & BackgroundIntroduction & Background 2209.1

Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work 2249.2

Needfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey SummaryNeedfinding Survey Summary 2279.3

LifesheetsLifesheetsLifesheetsLifesheetsLifesheetsLifesheetsLifesheetsLifesheetsLifesheetsLifesheets 2309.4

Standardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked DataStandardizing Tracked Data 2419.5

Lifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case StudiesLifesheets Case Studies 2439.6

User StudyUser StudyUser StudyUser StudyUser StudyUser StudyUser StudyUser StudyUser StudyUser Study 2489.7

Results & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & DiscussionResults & Discussion 2519.8

Future WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture WorkFuture Work 2659.9

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 2679.10

Discussion Discussion Discussion Discussion Discussion Discussion Discussion Discussion Discussion Discussion &&&&&&&&&& Future Work Future Work Future Work Future Work Future Work Future Work Future Work Future Work Future Work Future Work 26810

Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications?Can This Model Build Non-Trivial Applications? 26810.1

Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data?Formulas as Data? 27810.2

Contents

12 /324

Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting) 27910.3

End-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user AbstractionsEnd-user Abstractions 28010.4

Visual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct ManipulationVisual Mavo Builders and Direct Manipulation 28110.5

Towards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent WebTowards a Declarative, Transparent Web 28210.6

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion 28611

Personal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding surveyPersonal tracking needfinding survey 287A

Needfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey DetailsNeedfinding Survey Details 287A.1

Needfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey QuestionsNeedfinding Survey Questions 293A.2

Contents

13 /324

List of Figures
Examples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. GraphicExamples of applications novices wanted to build from our user studies. Graphic
adapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-objectadapted from zenpencils.com/comic/98-alan-watts-what-if-money-was-no-object 21

1.1

A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: A to-do list application built with Mavo, showcasing all four core components: MavoMavoMavoMavoMavoMavoMavoMavoMavoMavo
HTMLHTMLHTMLHTMLHTMLHTMLHTMLHTMLHTMLHTML , , , , , , , , , , Formula²Formula²Formula²Formula²Formula²Formula²Formula²Formula²Formula²Formula² , , , , , , , , , , MadataMadataMadataMadataMadataMadataMadataMadataMadataMadata , and , and , and , and , and , and , and , and , and , and Data Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update ActionsData Update Actions 25

1.2

A fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanyingA fully-functional To-Do application made with Mavo, shown with its accompanying
code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling.code and the starting HTML mockup. CSS not shown, but is only used for styling. 49

3.1

A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm.A summary of the data loading algorithm. 573.2

Different types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from theDifferent types of editing widgets for different types of elements. Clockwise from the
top left: top left: top left: top left: top left: top left: top left: top left: top left: top left: , , , , , , , , , , <meter><meter><meter><meter><meter><meter><meter><meter><meter><meter> , , , , , , , , , , <time><time><time><time><time><time><time><time><time><time> , , , , , , , , , , <a><a><a><a><a><a><a><a><a><a> 61

3.3

The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1.The Mavo tree created for the To-Do app shown in Figure 3.1. 673.4

The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings.The debug tools in action, showing local values and warnings. 683.5

The Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in theThe Mavo Inspector Chrome extension with a collection item selected in the
Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression Elements panel and the expression count(hobby)count(hobby)count(hobby)count(hobby)count(hobby)count(hobby)count(hobby)count(hobby)count(hobby)count(hobby) evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . evaluated in that context . 69

3.6

A FormulaA FormulaA FormulaA FormulaA FormulaA FormulaA FormulaA FormulaA FormulaA Formula 2222222222 formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit formula operating on a shallow hierarchical schema, showcasing implicit
scoping (scoping (scoping (scoping (scoping (scoping (scoping (scoping (scoping (scoping (titletitletitletitletitletitletitletitletitletitle , , , , , , , , , , donedonedonedonedonedonedonedonedonedone , , , , , , , , , , duedueduedueduedueduedueduedue), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.), filtering & grouping operators, and temporal computation.
Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the Parentheses around the wherewherewherewherewherewherewherewherewherewhere expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence expression are added for clarity — operator precedence
rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result.rules would produce the same result. 74

4.1

A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula².A JSON object and the corresponding representation in Formula². 834.2

A data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are mergedA data tree on the left and its generated schema on the right. List items are merged
into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars.into a single schema node, and arrays win out over scalars. 92

4.3

A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema.A sample application using data with this schema. 984.4

The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular. 984.5

The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular. 1014.6

Our experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUIOur experimental visual app builder Lifesheets () is also the first prototype of a GUI
application using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their dataapplication using Madata to offer users the freedom of being able to store their data
in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose.in any location they choose. 108

5.1

The hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of AugustThe hierarchy of backend classes in Madata's prototype implementation as of August
2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green.2024. Abstract classes shown in green. 112

5.2

14 /324

The only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate theThe only role of a Federated Authentication Provider (FedAP) is to authenticate the
user with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back touser with the third-party service, obtain an access token, and communicate it back to
the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).the client-side application. It does not even need to store them (although it can).
From that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directlyFrom that point onwards, the Madata backend is expected to communicate directly
with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service.with the third-party service. 115

5.3

An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen.An example of an authentication confirmation screen. 1165.4

Visiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadataVisiting a FedAP’s root domain displays a list of supported services. Their metadata
is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`.is also available programmatically via `/services.json`. 118

5.5

GitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal accessGitHub is an example of a cloud service that allows users to create personal access
tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions.tokens with very elaborate, fine-grained custom permissions. 124

5.6

The The The The The The The The The The completecompletecompletecompletecompletecompletecompletecompletecompletecomplete HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a HTML for a fully-functional To-Do app made with Mavo, with a
data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed.data update action for deleting completed items. No JavaScript is needed. 128

6.1

A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls.A dice rolling application with a history of past dice rolls. 1346.2

User study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, andUser study tasks are shown in the mockups that were given to participants, and
results are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element backresults are broken down by task category. The green arrows point to element back ‐‐‐‐‐‐‐‐‐‐
grounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page elegrounds, which participants made dynamic via inline styles or class names. Page ele ‐‐‐‐‐‐‐‐‐‐
ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.ments involved in specific tasks are outlined with color codes shown in the table.
“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter.“Make editable” tasks are not shown to prevent clutter. 151

7.1

Participant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you toParticipant responses to the question “How long do you think it would take you to
build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo.build this application?” before learning about Mavo. 152

7.2

A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users.A sample of Own Address Book applications created by users. 1587.3

Mavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible CardMavo apps independently created by participants. Clockwise: Collectible Card
Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker.Game, Horse feed management, bug tracker. 159

7.4

The people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasksThe people application, used for a variety of tasks 1667.5

The hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, DiceThe hands on tasks with their solutions. From top to bottom: Words game, Dice
Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own).Roller, our Shopping List (for participants who did not bring their own). 169

7.6

The shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bringThe shopping list application with its solution (for participants who did not bring
their own)their own)their own)their own)their own)their own)their own)their own)their own)their own) 180

7.7

The four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) DailymotionThe four apps completed by participants in the Mavo-Shapir study: (1) Dailymotion
playlist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Eventplaylist viewer, (2) YouTube video search, (3) Yelp & Foursquare search, (4) Event
searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick.searching app combining SeatGeek, Ticketmaster, Songkick. 183

7.8

List of Figures

15 /324

An artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data fromAn artist page made with Mavo and Wikxhibit that displays integrated data from
different websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albumsdifferent websites: general information about the artist from Wikidata, their albums
and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick.and tracks from Spotify, their videos from YouTube, and their events from Songkick. 185

7.9

A fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessedA fully functional blog built with Mavo. The live version can be accessed
at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog.at mavo.io/blog. 190

8.1

A multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed atA multipage recipe manager built with Mavo. The live version can be accessed at
forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com.forkgasm.com. 193

8.2

A fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can beA fully functional invoicing application built with Mavo. The live version can be
accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice.accessed at mavo.io/demos/invoice. 194

8.3

A fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed at
mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop.mavo.io/demos/eshop. 195

8.4

An editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed atAn editable artist portolio. The live version can be accessed at
mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio.mavo.io/demos/portfolio. 200

8.5

A fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can beA fully functional research group website built with Mavo. The live version can be
accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu.accessed at haystack.csail.mit.edu. 201

8.6

A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage A custom app to manage Disposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of CommentsDisposition of Comments for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group, for the CSS Working Group,
showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.showcasing how Mavo can be used to build custom intersecting filtering widgets.
The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-The live version can be accessed at drafts.csswg.org/issues?spec=css-images-
3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012.3&doc=cr-2012. 203

8.7

A fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed atA fully functional e-shop built with Mavo. The live version can be accessed at
mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath.mavo.io/demos/svgpath. 206

8.8

A pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGOA pure Mavo visual programming environment for (a subset of) the LOGO
programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.programming language. The live version can be accessed at mavo.io/demos/turtle.
The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-The concept and design was inspired from a demo by Nicky Case at ncase.me/joy-
demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle.demo/turtle. 210

8.9

The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code.The app provides both LOGO and JavaScript code. 2118.10

A clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can beA clone of the popular Memory game built with Mavo. The live version can be
accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game.accessed at dmitrysharabin.github.io/mavo-memory-game. 215

8.11

A clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can beA clone of the popular Wordle game built with Mavo. The live version can be
accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle.accessed at dmitrysharabin.github.io/mavo-wordle. 217

8.12

List of Figures

16 /324

A set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left toA set of example Lifesheets applications, tracking various aspects of life. From left to
right: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, bloodright: Work time tracker, migraine tracker, bilingual child vocabulary tracker, blood
pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker.pressure tracker. 220

9.1

Reasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, brokenReasons given for not tracking the things participants have wanted to track, broken
down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases.down by self-tracking use cases, and parental tracking use cases. 228

9.2

The Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in aThe Lifesheets editor, in Design view, with a property selected (diastolic), shown in a
browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"browser window. Temporal and data privacy settings are found in the "Main info"
panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right.panel on the top right. 230

9.3

The predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cateThe predefined temporal fields generated with the selection of each temporal cate ‐‐‐‐‐‐‐‐‐‐
gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)gory. From left to right: (a) Single Date (b) Single date & time (c) Range of dates (d)
Range of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & timesRange of dates & times 233

9.4

(Figure in (Figure in (Figure in (Figure in (Figure in (Figure in (Figure in (Figure in (Figure in (Figure in ““““““““““ Lifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self ApplicationsLifesheets: End-User Development of Quantified Self Applications ””””””””””)))))))))) 2349.5

Temporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficientTemporal properties come with several suitable defaults to facilitate efficient
data entry.data entry.data entry.data entry.data entry.data entry.data entry.data entry.data entry.data entry. 235

9.6

The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,The chart chooser interface (not shown: common controls for dimensions, visibility,
appearance)appearance)appearance)appearance)appearance)appearance)appearance)appearance)appearance)appearance) 238

9.7

Mavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excepMavo concepts are largely exposed directly via the Lifesheets GUI, with one excep ‐‐‐‐‐‐‐‐‐‐
tion: tion: tion: tion: tion: tion: tion: tion: tion: tion: computed propertiescomputed propertiescomputed propertiescomputed propertiescomputed propertiescomputed propertiescomputed propertiescomputed propertiescomputed propertiescomputed properties 239

9.8

Expression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used inExpression authoring conveniences. From left to right: (a) The text field used in
places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,places where expressions are allowed in three states: literal text, invalid expression,
valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.valid expression (b) The Quick Add widgets with the Duration widget expanded.
Top: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when anTop: entry, bottom: general. (c) The docs browser which opens automatically when an
expression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caretexpression is focused, on a suitable entry based on the expression content and caret
position.position.position.position.position.position.position.position.position.position. 239

9.9

Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker.Bilingual child vocabulary tracker. 2459.10

UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)UI for actions, showing two simpler actions and a more complex, composite one: i)
Add new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentiallyAdd new entry with pre-filled fields ii) Set end date to current time (essentially
marking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with amarking an event as “finished”) iii) “Consolidate” entries by replacing them with a
new equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entrynew equivalent entry 247

9.11

The finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found inThe finished care hours calculator. A live version of this application can be found in
lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates.lifesheets.app/user/lifesheets-templates. 248

9.12

Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.Three of the lifesheets participants created for their needs during the user study.
From left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacksFrom left to right: mood tracker, run tracker, tracker for cat asthma attacks 262

9.13

List of Figures

17 /324

The three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the userThe three lifesheets participants created for their needs in the days following the user
study. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretchingstudy. From left to right: i) U4’s improved cat asthma tracker ii) U6’s stretching
tracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation trackertracker iii) U7’s custom period/ovulation tracker 263

9.14

The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)The lifesheets U4 worked on for the months following the study From left to right: i)
Improved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain trackerImproved cat asthma tracker ii) Prototype of pain tracker 264

9.15

The very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list ofThe very first Mavo demo: A web application to manage and publish a person’s list of
past and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talkspast and future conference talks 269

10.1

Entering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in CodaEntering an inline formula in Coda 27910.2

Using Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene withUsing Mavo and A-Frame to create an interactive parameterized 3D scene with
HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe.HTML. Interactive demo at mavo.io/demos/aframe. 283

10.3

Self-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents thatSelf-tracking use cases from the survey, ordered by percentage of respondents that
manuallymanuallymanuallymanuallymanuallymanuallymanuallymanuallymanuallymanually tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. 288

A.1

Child tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents thatChild tracking use cases from the survey, ordered by percentage of respondents that
manuallymanuallymanuallymanuallymanuallymanuallymanuallymanuallymanuallymanually tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. tracked them. 289

A.2

Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-Respondent motivations for tracking or wanting to track, broken down by self-
tracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use casestracking and parental tracking use cases 291

A.3

List of Figures

18 /324

List of Tables
Lines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popularLines of JavaScript code required to implement a simple to-do application in popular
JavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments notJavaScript frameworks. Other frameworks are in the same ballpark. Comments not
included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from included in the count. Statistics from todomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.comtodomvc.com 50

3.1

Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators.Precedence and associativity of Formula² operators. 904.1

The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular.The two schemas: hierarchical and tabular. 934.2

(Table in (Table in (Table in (Table in (Table in (Table in (Table in (Table in (Table in (Table in ““““““““““ Extending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update ActionsExtending a Reactive Formula Language with Data Update Actions ””””””””””)))))))))) 1366.1

Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages.Participant familiarity with web development languages. 1497.1

User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages.User study participants’ familiarity with data specification languages. 1497.2

Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references.Success rate of simple references. 1547.3

Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies.Participants’ familiarity with web technologies. 1657.4

All 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering wasAll 17 data manipulation questions. The third column indicates whether filtering was
needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question.needed to answer the question. 167

7.5

Numbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List taskNumbers of participants and median times for each Shopping List task 1807.6

The tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task hasThe tasks for both applications and both conditions. The wording of each task has
been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length.been lightly edited for length. 250

9.1

Task completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers areTask completion rates, times, and number of failed tasks per condition. Numbers are
medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean.medians unless otherwise noted. x̅ is the mean. 251

9.2

19 /324

20 /324

 5,120 words (15 min read)

Figure 1.1 Examples of applications novices wanted to build from our user studies. Graphic adapted from
zenpencils.com/comic/98-alan-watts-what-if-money-was-no-object

Most Web users have needs beyond what commercial web applications support.
Automating common tasks, storing arbitrary data and performing calculations on them,
tracking, are only a few categories of use cases.

Despite the Web originally being designed so that anyone could contribute, not just
passively consume [1], these days the Web Platform 1 has grown tremendously in both
complexity and power. It now takes years of training for someone to be in a position to

CHAPTER 1

Introduction

21 /324

https://zenpencils.com/comic/98-alan-watts-what-if-money-was-no-object
http://localhost:8002/phd/chapters/introduction/#fn-introduction-1

create bespoke web applications, and even professional programmers with years of experi‐
ence often lament the complexity of the modern web stack.

Even though trained programmers have the ability to create web applications for their
own needs, the task is still so laborious, they rarely embark on it.

The goals of my research are three-fold.

1. The primary goal is to make web application development accessible to a wider
audience and bring it within reach of everyone.

2. A secondary goal is to make it faster for any audience. If trained programmers can
create prototype applications really fast, everyone wins.

3. Lastly, a tertiary goal is to contribute towards increasing the amount of machine-
readable data on the Web and towards decentralization, not by attempting to con‐
vince users that these are worthy goals, but by creating technologies that incorpo‐
rate them as a natural part of the interaction that does not require additional effort
or even interest from the end-user.

Few questions fill web practitioners with more dread than a variation of this deceptively
simple query:

The reaction is typically a deer-in-the-headlights look, as if having explain to a small
child that puppies die sometimes. It is true that a multitude of tools and services exists,
but answering the question is less about picking the best tool for the job, and more about
scrambling to figure out the lesser of many evils.

Why Is Web Publishing Still Hard?1.1 0.3 %

"I want to publish a simple personal website and be able to easily
edit its content. Nothing much, just a bio, a portfolio, and a
contact form. I can’t afford to hire a web developer, but I’m a little
technical, I think I could do it. What tools would you recommend?

❝

The set of technologies used to develop web applications, see en.wikipedia.org/wiki/Web_platform
1

Chapter 1 Introduction  1.1 Why Is Web Publishing Still Hard?

22 /324

https://en.wikipedia.org/wiki/Web_platform
http://localhost:8002/phd/chapters/introduction/#fn-introduction-1

Social media services (e.g. Facebook or Medium) are likely the lowest threshold (see
Section 1.4.1) solution, but also come with a very low ceiling. They afford no control over
presentation, and data schema and storage is entirely controlled by the service provider.
Similar downsides apply to website builders like Wix or Squarespace, though to a
lesser extent.

Content Management Systems (CMSes) are meant to be a middle ground between the
lack of control of centralized services and the complexity of writing a web application
from scratch but are associated with high levels of dissatisfaction [2]: they still require a
lot of technical skill to set up and maintain, they are bloated and heavyweight for most
use cases, yet still too rigid for many common use cases.

On the other end, the highest ceiling solution is to write a web application from
scratch. However, even for more technical users, this is a daunting task. Even a deceptively
simple website like the one described above would require a lot of code, and deep
understanding of many technical concepts such as authentication, templating, sending
and receiving HTTP requests, data binding, handshakes, asynchronicity, security, and
many more.

Despite the Web being originally envisioned as a read-write medium [1, 3], web pub‐
lishing today suffers from numerous usability cliffs (see Section 1.4.2).

Beyond publishing content, many users have data management needs that cross into the
realm of web applications, requiring not just data binding, editing, and persistence, but also
computation and interactivity. Examples abound: managing tasks, expenses, recipes,
tracking life events, calculating interest rates and loan payments, or even more complex
use cases like managing a small business or a community, to name a few.

Some of these use cases are common enough to make business sense for launching spe‐
cialized commercial applications, but others are part of the very long tail of use cases that
too niche to be served by commercial applications individually, yet vast in aggregate.

Even for use cases that on the surface appear to be well served by commercial
applications, user needs are also varied and often not fully met by one-size-fits-all solu‐
tions. For example, let’s take a simple use case like tracking household expenses. Some
families have joint finances, others keep them separate. Some of the latter split expenses
evenly, others proportionally by income, and others anywhere in between. Some families

From Documents to Web Applications1.1.1 0.6 %

Chapter 1 Introduction  1.1 Why Is Web Publishing Still Hard?

23 /324

only need to deal with one currency, others travel enough that currency conversion is a
frequent concern. Prefabricated applications either only deal to the subset of these needs
that are most frequently encountered (known in product management as the 80/20 Pareto
Principle [4]), or grow to enormous complexity (feature creep) if they try to cater to all of
them. While avoiding feature creep is generally good, it does mean that the resulting
applications skew toward mainstream needs, and often leave minorities behind.

The main alternative to prefabricated applications is to build one’s own tools. Unlike
the web publishing use cases, users rarely ask deceptively simple questions about this —
they simply assume that building high fidelity tools for their needs is out of reach. When
the delta between their needs and those catered by the prefabricated options, they typi‐
cally try to adapt them to the tool. When it is too large, they resort to no-code tools such
as spreadsheets, which do help with data management and lightweight computation, but
are very limited in terms of presentation and interactions and many users struggle with
authoring and debugging formulas [5, 6].

Creating websites and creating web applications is often treated as two distinct use
cases, but the line between them is blurry. The need to manage structured data and share
and display them on a webpage is very common. Consider a personal website displaying a
portfolio, or a list of publications, speaking engagements, press mentions. Or a restaurant
needing to manage and display their menu with dishes, prices, categories. Or a real estate
website displaying listings of available properties. Or a wedding website that includes an
RSVP. Or a conference website that includes a list of speakers, abstracts, and a schedule.

In all of these cases the data is structured, and cannot be managed (well) by interfaces
essentially treating it as rich text. Furthermore, while these are often presented statically
to end-users, end-users benefit tremendously [7] from the ability to interactively explore
the data via filtering, sorting, aggregates, and other operations. The end-user need is so
strong that there has been research in enabling such capabilities on websites not designed
to provide it [8]. Making it easier for website authors to provide such functionality in the
first place could provide tremendous value to end-users and have a ripple effect on the
Web as a whole.

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

24 /324

Figure 1.2 A to-do list application built with Mavo, showcasing all four core components: , ,
, and .

It was these recurring pain points around managing, sharing, and transforming data on
the Web that led me to design the Mavo language and associated components.

Mavo is a novel low-code programming language that extends the declarative syntax of
HTML to describe small-scale web applications that manage, store and transform data
(henceforth referred to as data-driven web applications).

The Mavo Ecosystem for Low-
code Web Application Development

1.2
1 %

Mavo app

<body mv-app="todo" mv-storage="https://www.dropbox.com/…/todo.json">
<h1>My tasks</h1>
<p>[count(done)] done, [count(task)] total
<ul mv-list property="task">

<input type="checkbox" property="done" />
Do stuff

<button mv-action="delete(task where done)">Clear Completed</button>

</body> Mavo HTML

Mavo HTML Formula²
Madata Data Update Actions

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

25 /324

Authoring HTML does require some technical skill (although the ACM cites knowledge
of HTML and CSS to be at the K-12 level of computer literacy [9]), but lowering the
barrier of web application programming down to authoring HTML brings it within
reach for everyone. Even for end-users who have never written a line of code, learning
HTML from scratch is a much more manageable task than learning the entirety of
modern web development concepts.

The Mavo language consists of four key components:

1. Formula², a hierarchical formula language designed from scratch to be easy to use
and understand, even when working with deep hierarchical data structures.

2. Madata, a set of protocols and APIs which allow applications to read and store
data either locally or to a variety of remote services, all with the same unified API.

3. The Mavo HTML syntax, which extends HTML with syntax to describe data-
driven web applications and embeds reactive computation via Formula² expressions
and unified storage via Madata URLs.

4. Data Update Actions, an extension to both Mavo HTML and Formula², which
allows authoring data manipulation sequences that are triggered by user actions
while largely maintaining the same low threshold (see Section 1.4.1) of Mavo
HTML and Formula².

While there is great synergy between these four components, each of them is an indepen‐
dent contribution of this thesis, and is useful even without the others.

All four Mavo components share the same design principles, which are also key fea‐
tures that enabled the growth of the early Web:

No installation, configuration, or maintenance. Anyone could “join the Web” simply
by putting an HTML file on a web server. Similarly with Mavo, one only needs to
put an HTML file on a web server capable of serving static files (no server-side
code execution is required) and they can immediately take advantage of Mavo. This
is a direct corollary of Section 1.4.1.
Tinkerability. A web application’s entire logic is in its HTML file, and can be
copied and tweaked. Furthermore, the data source of any Mavo app can be over‐
ridden by simply changing a URL parameter, which enables end-users to repurpose
other people’s Mavo apps for their own needs even without copying them to their
own file space.

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

26 /324

Incremental complexity. Authors can add additional functionality and complexity in
small steps, never needing to swallow a whole new set of ideas in one dose (see
Section 1.4.2).
No network effect required. Unlike social networking sites, Mavo provides immediate
benefits to its first adopter, regardless of others’ actions. It simplifies the author’s
management of their data, and offers visitors using existing web browsers a better
interface to that data than can be built by typical web authoring tools with the
same effort.
Robustness and fault tolerance. Fault-tolerance is one of the design principles that
guided the design of these technologies (see Section 1.4.4). Reminiscent of the
design philosophy of Scratch [10], Mavo components generally attempt to do
something sensible with most input rather than failing with an error message.

A key part of Mavo is its formula language called Formula² (MavoScript in earlier litera‐
ture) [11, 12]. Formula² expressions can be embedded almost anywhere in Mavo HTML
by delineating them with certain syntactic tokens, or raw in certain attributes.

Formula² was designed with the explicit goal of reducing the amount of cognitive over‐
head around abstract data operations, and allow novices to write formulas that are closer
to natural language, yet still unambiguous and easy to parse. To achieve this, it introduced
several novel concepts, such as:

Implicit reference semantics, where references are resolved based on the context of the
formula, to alleviate users from complex mapping operations or long and fragile
reference chains.
Seamless list-valued operations, where operations on lists work just like operations on
scalars, to reduce how much novices need to think about (or even know) the struc‐
ture of their data.
Robust and forgiving syntax in line with our design principles, which is unusual in
the space of formula languages.

The contributions of Formula² are described in more detail in Chapter 4.

While originally developed for Mavo, Formula² has no particular dependence on Mavo
concepts, and can be used to evaluate expressions against any arbitrary hierarchical data
structure. That said, it is primarily useful for systems where the expression and the data

Formula²: A Human-centric Hierarchical Formula Language1.2.1 2 %

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

27 /324

have a natural mapping to elements in a visual layout, whose visual hierarchy largely fol‐
lows the data hierarchy. Mavo is one such system, but so are most visual no-code systems.

One of Mavo’s key features is its ability to store data remotely on a variety of cloud ser‐
vices, without requiring the author to register any OAuth [13] applications or write any
authentication code. Storing and reading data remotely becomes almost as simple as
storing it locally, and one storage service can be seamlessly swapped for another with the
same capabilities without requiring any changes to the application code. All that users
need to do is simply provide a URL that unambiguously identifies the storage location
and Mavo takes care of the rest.

Originally hardcoded in Mavo HTML, after launching Mavo as an open source
project in 2017, it quickly became clear that the potential reach of these concepts was
broader than Mavo.

Reading and storing data is an integral part of many languages and systems. Yet, end-
users typically have no control or ownership over their data. This is partly due to business
reasons, but also because its is far easier for application developers to store data in a cen‐
tral location they control.

Madata makes it trivial to store data on any supported service, and swap out one service
for another. Storage locations are specified by URLs, most of which can be easily obtained
from the user interface of each service. Then, Madata takes care of the rest
(authentication, data transformations, pagination, flags, etc.). Swapping one service for
another is simply a matter of using a different URL, and requires no changes to the
application code.

To ensure robustness and prevent centralization, extensibility is essential. Teaching
Madata about new backends requires minimal JavaScript knowledge, especially for back‐
ends that follow certain known protocols (e.g. OAuth 2 [14]).

Madata frees authors from the need to procure servers that can run server-side code, a
far more involved task. Nearly all of Madata runs client-side and interacts with APIs
directly from client-side JavaScript.

There is one exception: Authentication. To facilitate experimenting with different
storage locations without having to go through the hassle of registering applications,

Madata: Facilitating Data Ownership by Democratizing Data Access1.2.2 2.2 %

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

28 /324

Madata introduces the concept of a federated authentication provider. This is a generaliza‐
tion of Mavo’s original ad hoc authentication server (auth.mavo.io), which is now simply
another Madata authentication provider. These are servers that encapsulate API keys for
supported services, and handle authenticating end-users and ensuring that users are not
misled by malicious applications.

The European Union establishes data portability as a fundamental human right [15].
Madata prototypes a future where end-users can own their data and choose its location by
simply entering a URL in the settings of the application they are using. If they later
change their mind, and wish to store their data elsewhere, all they need to do is change
the URL. This data portability affords a federated version of data ownership that places
no additional (time or technical skill) burden on end-users than centralized architectures.

A key contribution of this dissertation is Mavo [11], a novel programming language that
extends the declarative syntax of HTML to describe Web applications that manage, store
and transform data (these will henceforth be referred to as data-driven web applications).

Using Mavo, authors with basic HTML knowledge define complex nested data
schemas implicitly as they design their HTML layout. They need only a few HTML
attributes and expressions to transform a static HTML template into a persistent, data-
driven, access-controlled web application whose data can be edited by direct manipulation
of the content in the browser. Mavo has been evaluated in lab studies, and in the real
world, as an open source project.

Unlike current low-code/no-code approaches based on proprietary platforms, evolving
the HTML language provides a solution that is universal and portable, with no depen‐
dence on any particular web infrastructure. By defining its syntax as an extension of
HTML, all tools that process HTML — some of which do target end-users — can also
process Mavo code.

This resulted in the following key ideas and primitives for Mavo HTML:

UI First. User interfaces are less abstract than data, and thus require less technical
expertise to reason about. With Mavo, authors are designing their interface with
the tools they are used to; then they annotate where data goes in it. The data model
is not specified separately, in the abstract; it is generated through these annotations.
We believed that pointing to concrete places on a template is easier for novices than

Mavo HTML: Creating Web Applications by Authoring HTML1.2.3 2.5 %

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

29 /324

https://auth.mavo.io/

the abstract data modeling tasks that traditional software engineering requires and
our lab studies validated that hypothesis.
Editability. Creating a WYSIWYG interface for editing data in place is as simple
as naming the data and choosing an appropriate HTML element for it.

Furthermore, embedding Formula² expressions and Madata URLs in Mavo HTML
results in these additional primitives:

Persistence. Data can be stored locally or remotely, on one of the many supported
cloud services, by simply providing a storage URL. Mavo takes care of authentica‐
tion, if needed. Access control is enforced by the remote service.
Lightweight computation through a reactive expression language called Formula²
similar to spreadsheet formulas but designed for nested schemas like those organi‐
cally created in most Mavos. A key feature of Formula² is its novel reference mech‐
anism: properties can be referenced from everywhere in the template, and the rela‐
tive placement of the expression to the data affects what the named reference
resolves to.
Reactive defaults, which are essential to many very common use cases such as smart
default values, or editable formulas.

Originally, Formula² was purely reactive and side-effect free. However, we kept encoun‐
tering use cases requiring programmatic data modification, triggerred by user actions.
Often applications were almost entirely CRUD with lightweight computation and only
one or two simple actions, but the inability to specify these actions made Mavo unsuitable
for these use cases.

After exploring several alternatives, we decided to make these possible by extending
Formula² with data update actions [12], which are only enabled in specific application-
dependent contexts (e.g. an mv-action attribute in Mavo). We then did user research to
ensure that our proposed syntax felt natural [16] to novices.

Our design adds minimal complexity but significantly expands the use cases that can
be satisfied.

While our research focused on Mavo applications, the core concepts can be used to
extend any reactive formula language with Data update actions (and since the publication
of [12], some commercial no-code systems implemented similar ideas to great success).

Data Update Actions1.2.4 2.9 %

Chapter 1 Introduction  1.2 The Mavo Ecosystem for Low-code Web Application Development

30 /324

In fact, data update actions do not even depend on hierarchical data structures, as this
is a common spreadsheet user pain point. Perhaps this work could serve as a basis to
address it.

Mavo is a low-code language, rather than a no-code system 2 and targets HTML authors
rather than end-users. While we have made the argument that the effort required for an
end-user to become an HTML author is minimal, and certainly orders of magnitude
smaller than the effort required to become a fully-fledged web developer, any amount of
syntax is a barrier to entry for a large group of people.

My later research explored the question “If we eliminate HTML syntax, would end-users
be able to use and understand Mavo concepts?”.

We hypothesized that a domain-specific visual app builder would be more effective.
Since personal tracking use cases are both very common, and a class of applications with
minimal network effects, we decided to start by prototyping Lifesheets, a visual IDE for
building custom Quantified Self [17] applications.

In addition to demonstrating that Mavo concepts can largely be understood by
end-users with no technical skill beyond spreadsheets, Lifesheets introduces a novel
architecture for empowering users of all technical skills to create web applications that are
portable, malleable, and not dependent on any particular infrastructure.

We conclude the introduction by describing a set of design principles that guided the
development of the languages and systems presented in this thesis.

Lowering the Threshold to End-Users1.3 3 %

Design Principles1.4 3.2 %

There are currently no no-code languages, though advances in Artificial Intelligence may soon change this.
2

Chapter 1 Introduction  1.4 Design Principles

31 /324

http://localhost:8002/phd/chapters/introduction/#fn-introduction-2
http://localhost:8002/phd/chapters/introduction/#fn-introduction-2

Decades later after Alan Kay, Myers et al formalized this idea by introducing the concept
of threshold and ceiling [18].

The threshold is how difficult it is to learn how to use a system 3, i.e. its learnability; the
ceiling is how much can be done using it, i.e. its expressive power.

Use case complexity

UI
 c

om
ple

xi
ty

Threshold
“Simple things
should be easy”

Ceiling
“Complex things

should be possible”

Myers said that most successful systems are either low threshold / low ceiling (easy to
learn but limited in expressiveness) or high threshold / high ceiling (hard to learn, but
very powerful). In other words, most successful systems either trade off learnability for
power or the opposite.

It seems clear that balancing a low threshold and a high ceiling would be ideal, but per
Myers et al, it remains a challenge.

While a low threshold and a high ceiling are certainly desirable, and establish a usability
bar that a good majority of systems cannot pass, they are not sufficient.

Many systems today achieve a low threshold and a high ceiling by simply combining a
low threshold / low ceiling solution with a high threshold / high ceiling one. When more
power is desired than what the low-threshold solution affords, users are directed to the

Maximize the Distance Between Threshold and Ceiling1.4.1

“Simple things should be easy, complex things
should be possible” — Alan Kay (rumored)❝

Incremental User Effort Should Produce Incremental Value1.4.2 3.4 %

“or language” is implied.
3

Chapter 1 Introduction  1.4 Design Principles

32 /324

http://localhost:8002/phd/chapters/introduction/#fn-introduction-3
http://localhost:8002/phd/chapters/introduction/#fn-introduction-3

high-threshold solution. This introduces a “usability cliff”, a point where a small increase in
use case complexity results in a disproportionately large increase in UI complexity.

Use case complexity

U
I

co
m
pl
ex

it
y

Threshold

Ceiling

Cliff

The threshold and ceiling merely establish the two extremes of a spectrum, but many use
cases are not at either extreme. For optimal usability, we want a smooth use case complexity
to UI complexity curve, where UI complexity increases gradually with use case complexity.
Incremental user effort should result in incremental value; there should be no sudden
jumps in complexity. The rate of increase matters too; the flatter, more horizontal the
curve, the better.

Essentially, this is a corollary of the Attention Investment Model of Abstraction Use [19],
whose core idea is that programmers have a finite supply of time and attention to invest.
For an investment to be worthwhile, the expected payoff must exceed the cost, unless the

risk is too great. The cost of the investment is the amount of attention by the user that
must be devoted to accomplishing a task. The expected payoff from that investment will
be some saving of attentional effort in the future, such as by achieving a good abstract

example
Relevant to this thesis is the example of the HTML5 <video> element. Its threshold is as low as HTML ele‐
ments go: all it takes to embed a video on a webpage with a sleek video player is a single attribute to specify the
video source and another to opt-in to the default playback controls:

However, authors cannot customize this playback toolbar beyond hiding buttons. Once any additional function‐
ality is desired, such as a subtitle selector, or buttons to jump a few seconds back or forwards, the only option is
to use the JavaScript API that these elements provide and write (a lot of) JavaScript to create a custom video
player from scratch.

<video src="myfile.mp4" controls></video>

HTML

Chapter 1 Introduction  1.4 Design Principles

33 /324

🤩

Use case complexity

U
I

co
m
pl
ex

it
y

formulation to reduce the amount of effort required to cope with similar problems. The
perceived risk is the extent to which the user believes the investment will not produce the
payoff, or that it will lead to even more costs that are not yet apparent. A cognitive simu‐
lation of programmer behavior has validated that this simple investment model can model
many of the actions and decisions made during programming tasks, both by professional
software engineers and end-user programmers [19], and there is evidence that it is effec‐
tive in practical language design [19].

A lot of the work presented in this thesis is about either reducing the threshold of web
programming, or making the curve of use case complexity to UI complexity more gradual.

Traditional programming languages often opt for explicit paradigms, where every para‐
meter of the computation is specified by the programmer. Everything is clear cut, and
there is no ambiguity, but to avoid potentially incorrect inference, this design offloads a lot
of work to the programmer, increasing cognitive load.

This rigidity can be frustrating for novices, who are more familiar with the communica‐
tion paradigms of natural language, which favor implicitness and ambiguity [20, 21]. In
natural language, the receiver of a message will largely infer several concepts from context,
and ask for clarification when needed. A compiler cannot ask for clarification, it can only
produce errors. The “clarification” is essentially the programmer fixing the issue.

Inference Should Be Escapable1.4.3 3.8 %

Chapter 1 Introduction  1.4 Design Principles

34 /324

Heuristic algorithms that attempt to infer author intent from incomplete input can often
improve user experience by reducing the amount of explicit input required and the
amount of errors produced (which we know are discouraging). However, when the infer‐
ence is incorrect, it is essential to provide a way for users to override the inferred behavior
and provide explicit input.

The importance of providing overrides depends on the frequency and consequences of
incorrect inferences. In some cases, the precence of alternative ways to solve the same
problem can be a sufficient escape hatch.

In some ways, this is a corollary of Section 1.4.2: inference is making simple things easy,
while escape hatches are making complex things possible.

example
CSS selectors [22] are a querying language for DOM trees, HTML’s hierarchical object model. When declara‐
tions from two CSS rules conflict, the browser must decide which one to apply. Rather than a simple rule like
“last one wins”, CSS uses an elaborate algorithm taking many factors into account (“The Cascade”).

One of these factors is the specificity of the selector, which assigns a weight to each selector based on its structure.
Essentially this is an inference mechanism that attempts to guess importance by proxy of querying logic. For
example, using an id selector (#foo) which in theory targets only a single element is more specific than using a
class selector (.foo) which targets several elements, which in turn is more specific than using a tag selector (div)
which targets any element of that type.

This works somewhat well in practice, but there are many cases where the inference is incorrect. As a particularly
egregious example, :not(#foo) targets all elements except one, yet enjoys the same high specificity as #foo.

For years, this was a source of frustration for CSS authors, since CSS did not provide a general mechanism for
lowering the specificity of a selector, only workarounds to increase it. This changed with the introduction of the
:where() pseudo-class (proposed by the author in 2017 4), and with Cascade Layers.

example
In JS, array.concat(value) attempts to infer intent based on the type of the argument(s) passed. If the argu‐
ment is an array, it will append the array values to the original array, rather than appending the array itself. If the
argument is not an array, it will append the argument itself, even when it’s a different iterable, e.g. a Set. In this
case, when a different behavior is desired the escape hatch is to use different language features, such as the spread
operator, or array.push(), not to add options to array.concat().

github.com/w3c/csswg-drafts/issues/1170
4

Chapter 1 Introduction  1.4 Design Principles

35 /324

http://localhost:8002/phd/chapters/introduction/#fn-introduction-4
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/concat
https://github.com/w3c/csswg-drafts/issues/1170
http://localhost:8002/phd/chapters/introduction/#fn-introduction-4

HTML is possibly the most tolerant mainstream computer language. This is no accident;
tolerance was one of its earliest design principles [23–25].

Eliminating error messages does not eliminate errors. However, when a program does
something, even if it is not correct, it feels closer to working and is less discouraging than a
program that does not run (or compile) at all [10].

Per [26], there are no errors; all operations are iterations towards a goal. Typing mis‐
takes or illegal statements can be thought of as an approximation. The language’s job is
then to aid the user in rapid convergence to the desired goal. In some cases, that may be
achieved via inference (see Section 1.4.3), in others by failing gracefully. Notifying the
user that there is a problem is important, but rarely requires complete and total failure.

This kind of resilience is especially important on the Web platform, where the environ‐
ment is unpredictable and the user base is vast and diverse. There is no guarantee that
when the error condition occurs, the user will be the website author. Thus, resilience
ensures a better user experience for all Web users.

Chapter 2 positions this thesis in the broader context of related research and tools that
aim to make web application development easier.

From there, Chapter 3 to Chapter 6, and then Chapter 9 describe various languages
and systems democratizing web application development and empowering data owner‐
ship from different angles:

Chapter 3 introduces the Mavo HTML language and briefly describes Formula2

and Madata and how Mavo HTML integrates them.
Chapter 4 expands on the Formula² hierarchical formula language.
Chapter 5 expands on the Madata JavaScript API and federated authentication
architecture.
Chapter 6 introduces Data Update Actions, a way to add programmatic data
manipulation to reactive formula languages.
Chapter 9 introduces Lifesheets, a domain-specific visual application builder for
building Mavo applications for personal tracking.

Be Liberal in What You Accept1.4.4
4.3 %

Thesis Overview1.5 4.5 %

Chapter 1 Introduction  1.5 Thesis Overview

36 /324

These chapters present the latest design of each technology, which is often the result of
multiple iterations following insights from user studies and deployments. They include
results from formative needfinding studies, example use cases, descriptions of system
specifications, and implementation details.

Then, Chapter 7 provides an overview of the various studies conducted to evaluate
these systems, and provides context for the status of Mavo technologies at the time each
study was conducted. These include results from lab evaluations, case studies, and wide
deployments as open source projects. We decided to present them after the description
of all four languages and systems, as many studies were evaluating more than one
component.

Chapter 8 presents a series of case studies of Mavo applications showcasing all tech‐
nologies in the Mavo ecosystem working together to produce high fidelity applications.
Some were created by Mavo users, and some by the author. Some are included because
they showcase interesting patterns for common use cases, and others because they push
the boundaries of what is possible with Mavo. Each case study is accompanied by a
description of key points from its architecture and implementation, as well as a list of lim‐
itations it exposes in the current Mavo ecosystem.

Last, Chapter 10 summarizes design lessons from these languages and systems, their
user studies and their deployments, discusses current limitations, and proposes future
research directions.

The thesis concludes in Chapter 11 by reviewing and summarizing the contributions of
this work.

Chapter 1 Introduction  1.5 Thesis Overview

37 /324

 3,280 words (10 min read)

There is a multitude of systems that assist novice web developers and end-users with
building dynamic, data-backed web applications, including research and commercial
tools. This section provides an overview of the current landscape.

In recent years, social media platforms for publishing web content have become a popular
way for end-users to publish their content for free, without having to deal with any of the
technical challenges of publishing a website they own.

Examples include Facebook Pages, blogging platforms (e.g. Medium, WordPress,
Tumblr, etc.), or profiles on media-rich social platforms (e.g. Instagram, Flickr,
TikTok, YouTube).

Out of all methods of publishing content on the web, this is certainly the one with the
lowest threshold, which explains its popularity.

However, it comes with severe drawbacks and limitations on the type of content that
can be published, what can be done with it, and how it can be displayed. These are typi‐
cally designed around the most common, most generic use cases (e.g. a blog or a gallery of
photos), which imposes severe limitations on the type of content that can be published,
what can be done with it, and how it can be displayed. Because they are still part of the
social platform that hosts them and need to maintain a consistent brand identity, they are
usually limited in terms of personalization and customization. Custom functionality is
typically not possible, and the platform may change or remove features at any time. Data

CHAPTER 2

Background
Related Work&

Web Publishing Tools2.1 5.1 %

Social Media2.1.1

38 /324

is owned by the platform, and portability is hard or impossible. As a result, if the social
media platform shuts down, content is (effectively) lost.

Visual website builders like Wix and Squarespace have revolutionized web development
by enabling novices to create and manage websites that look professionally designed
through direct manipulation interfaces, making it feasible for small businesses, freelancers,
and individuals to establish an online presence quickly and affordably. Being designed as
creative tools, these afford much better customization than the social media solutions dis‐
cussed in the previous section, as the central focus is the creative artifact produced, not the
connections between users.

However their how threshold typically also comes with a relatively low ceiling, or the
bifurcation described in Section 1.4.2 of having a low threshold and a high ceiling by
combining a low-threshold/low-ceiling solution with a high-threshold/high-ceiling solu‐
tion. These platforms rely heavily on pre-designed templates that dictate much of the
site’s layout and visual appearance. While these templates are often polished and profes‐
sional, they are also quite rigid. Users can make changes within predefined sections and
elements, but the overall structure is usually fixed. Advanced functionality is provided
via predefined plugins, widgets, and integrations, which can be added to the site with
a few clicks, but when these do not serve needs well, writing code is often the only
escape hatch.

As a result, while these platforms excel in simplicity and speed for use cases that
conform to the most mainstream of needs, they fall short to cater to the very long tail of
specialized use cases that emerge in practice.

Additionally, since these are (usually proprietary) platforms, users have limited control
over their data and content and transferring a website to another platform can be
challenging.

CMSes are possibly the most popular way for end-users to publish their content on a
website they control.

These include platforms typically hosted on one’s own server which connect to some
form of data storage (e.g. a database), and provide templating functionality and visual

SaaS Visual Website Builders2.1.2 5.2 %

Content Management Systems (CMSes)2.1.3 5.4 %

Chapter 2 Background & Related Work  2.1 Web Publishing Tools

39 /324

affordances for editing content. Examples of such systems include CMSes such as
Wordpress, Drupal, or Joomla.

Previous work has explored the high levels of dissatisfaction with how rigid and heavy‐
weight these are [27].

The drawback to many of these systems is that they often require using their own
heavyweight authoring and hosting environments, and they provide pre-made plugins or
templates that users can not customize without programming.

Another drawback is that they are structured around a very crude model of what is UI
and what is data, typically consisting of a set of pages with content that is edited all at
once, and no computation. While this model works for content-heaby websites, such as
blogs or media portals, it does not work so well for displaying and editing structured data
which is a lot more fine-grained than a single blob of text with a title and other metadata.

Displaying and editing structured data is a broad category of use cases that come up
very frequently, even for content-heavy websites. For example, thing of the personal blog
of a popular conference speaker, a textbook CMS use case. Displaying their list of talks,
their list of publications, a list of press mentions, a list of interviews they have given, all of
these are examples of structured data for which a CMS is not well suited.

The dissatisfaction around CMSes bred the growing community around static site gener‐
ators, such as Jekyll [28] and Eleventy [29]. These do not have a visual interface at all,
content is typically stored in Markdown files and HTML templaes, and the final HTML
is generated by invoking a terminal command.

While these are a lot more lightweight and afford tremendous levels of control, they
practically target exclusively web developers, as they require significant technical expertise
to configure, and offer no graphical interface for editing data.

Many uses of CMSes are merely to enable non-technical users to edit website content,
a use case that static site generators do not accommodate.

“Headless” CMSes are tools designed to bridge the gap between CMSes and SSGs, by
combining the ease of use of the former with the control of the latter. However, these

Static Site Generators (SSGs)2.1.4 5.6 %

“Headless” CMSes2.1.5 5.7 %

Chapter 2 Background & Related Work  2.1 Web Publishing Tools

40 /324

typically require the SSG to first be configured normally, and then its templates painfully
annotated to tell the CMS where data should go and how to edit it.

Moreover, they tend to fare poorly at providing a WYSIWYG preview of the rendered
website, since it’s not always clear to them what the content managed in the system will
be used for in the end.

So far, the types of website builders discussed focus on editing content and making it look
good via templates. Any computation is added via plugins, and if no suitable plugin exists,
it requires programming.

However, there is already a very successful paradigm for end-users to store their data
and perform computations on it: spreadsheets. Because of the popularity of spreadsheet
applications, many researchers and practitioners have explored eliminating the usability
issues of spreadsheets and pushing the boundaries of the spreadsheet paradigm.

Common extensions to the spreadsheet paradigm include:

Extending the formula language to named references [30–32]
Allowing the user to define datatypes, defaults, and formulas for entire columns
[30–32]
Extending the formula language and input affordances to support hierarchical
data [33–35]
Allowing the cells to be arranged in layouts other than a grid [36]
Extending the output to richer data types such as interactive graphics [36–38] or
maps [39]
Making it easier to correlate data across multiple tables via relations [31, 32]

While spreadsheets address the user need for lightweight computation, most spreadsheet
systems (research or commercial) share the same limitations:

They afford very little to no customization in terms of input UI
They are typically not portable: the data is stored within the spreadsheet, and the
functionality cannot easily be repurposed to handle different data or moved to a
different platform.

Spreadsheet Extensions2.2 5.8 %

Chapter 2 Background & Related Work  2.2 Spreadsheet Extensions

41 /324

Many only target single-user local web applications and do not address the unique
challenges that Web applications raise.

Because of the popularity of spreadsheet applications, some researchers have explored
using a spreadsheet for end-users to define and manage their data. For example, Quilt is a
system that allows users to link a Google spreadsheet with a webpage and provides simple
syntax to bind GUI elements with particular cells in the spreadsheet [40]. Similarly,
Gneiss is a live programming environment that incorporates a spreadsheet editor and
allows users to create bindings between GUI elements and spreadsheet cells [33].

A large class of web applications are purely CRUD (Create, Read, Update, Delete) inter‐
faces to structured data. Databases allow storing and querying structured data, but inte‐
grating them into a web application is quite laborious even for professional programmers.
A small study [41] found that the ratio of “plumbing” code to pure data code (business
logic + SQL) in a web application was a whopping 24.4:1!

Therefore, many systems have focused towards making database systems more user-
friendly for web application development, and/or building interfaces to easily display and
edit database data.

One direction involved bridging the spreadsheet and database paradigms by exposing a
database as a hierarchical spreadsheet [32, 35, 39, 42, 43].

SQL is a widely accepted data query and manipulation language, and its declarative
nature means that relatively complex data queries and updates can be performed using
even a single short line of SQL.

However, web designers with limited knowledge of databases might not be able to
write SQL queries in order to make these edits programmatically. Several database-driven
web application platforms have been developed to assist non-programmers to build web
applications. WebML [44] presented a web modeling language that provided a graphical
way of specifying the database schema and navigational structure of web application.
However, WebML does not provide a mechanism to do programmatic updates to the
data. A lot of work has been conducted on developing visual query languages [45–47].
These systems hide the SQL syntax from the users, but they still show the database
schema and the relational tables, which could be overwhelming for non-programmers

Do-It-Yourself Database-driven Web Applications2.3 6.1 %

Chapter 2 Background & Related Work  2.3 Do-It-Yourself Database-driven Web Applications

42 /324

with limited knowledge of databases. They also do not offer any way for the user to create
web pages on top of these visual query languages. Other systems have focused on creating
form-based visual tools for creating queries, design database, and define views [48–50].
However, these tools do not offer a WYSIWYG environment and they similarly require
the users to deal with joins across multiple tables, which has been shown to be unnatural
for average users [51].

AppForge [52] tried to hide the complexity of building and editing databases by devel‐
oping a graphical interface to navigate the database schema. And like our proposed exten‐
sion to Mavo, it provided graphical primitives, in which developers can create and edit
NRA views over the schema. Nevertheless, it exposes non-programmers to the complexity
of databases. FORWARD [53] is another system that provides a powerful WYSIWIG
environment for creating web applications, however, not only it requires writing SQL
queries within HTML, but it also requires writing JavaScript if users need to create a
custom visual layer. Other systems, like that presented by Kowalzcykowsi et al. [54] pro‐
vide a WYSIWYG environment and do not require users to edit the database schema
directly; nevertheless, they do not provide an abstraction for complex relationships, aggre‐
gation and nesting. Mavo [11] allows users with basic HTML knowledge to create Web
applications that manage, store and transform data, and unlike some of the previous work
it provides for nested data, but does not let you join one nested data blob to another, it
also offers controls for adding, updating, and deleting individual items manually.
However, the only data manipulation that Mavo presented is direct editing of a single
item, although in many applications, even simple ones, there are more complex editing
actions that need to be developed. In this work, we extended Mavo to support specifying
such actions programmatically.

Visual application builders like app2you [54] and AppForge [52] allow authors to specify
the design of pages by placing drag-and-drop elements into a WYSIWIG-like environ‐
ment. However, this approach limits authors to only the building blocks provided by the
tools and provides very little control over the specifics of the interface created.

Some systems have been developed to provide a WYSIWYG interface that allows non-
programmers to create web applications, without dealing with the complexity of databases
and SQL queries, by using spreadsheet as the a back-end. Dido [55] allows users to

WYSIWYG Application Builders2.4 6.6 %

Chapter 2 Background & Related Work  2.4 WYSIWYG Application Builders

43 /324

visualize, edit, and store editable data directly in their browser. It allows web designers to
integrate Dido into any web design and made it independent of any back-end system.
Another system is Quilt [40], which integrates web applications to a Google spreadsheet,
allowing web authors with no programming skills to gain access to lightweight
computation.

Gneiss [33, 34] is another interactive system that extended a spreadsheet. It lets users
retrieve JSON data returned from web services to a spreadsheet interactively without pro‐
gramming, unlike some of the previous work, Gneiss supports hierarchical data. However,
since it depends on spreadsheets as the back-end, it does not really provide a mechanism
to update data. None of the previous work provided a mechanism for programatically
allowing end-users to specify data updates, without them having to write SQL queries,
which can get complicated for nested schemas [51] or scripting. Our work is building on
top of Mavo to make it more powerful, allowing users to specify computational data
updates that are not evaluated reactively, but are executed based on user interaction.
Rather than limiting users to only manually data editing, we want to empower them to
create richer data interactions and ultimately, to build more powerful web applications.

The idea of extending HTML to make it more powerful is not new; there have been
many past attempts at extending it in different directions.

Many attempts to make HTML more powerful treat HTML as a shortcut for pro‐
grammers to express programming concepts more succinctly. They focus on reducing the
amount of programming code required, not its difficulty. One such system was
FORWARD [41] which aimed to simplify the “plumbing code” needed to render and
edit data stored in a SQL database into a web page. It was quite powerful, but required
writing SQL queries within HTML. There are also several JavaScript frameworks with
this philosophy, starting with AngularJS [56] in 2010 and more recently VueJS [57].
These adapt and extend HTML to present dynamic content through two-way data-
binding that allow for the automatic synchronization of models and views, but require the
user to be well versed in JavaScript to use them.

ConstraintJS [58] extended HTML with a templating syntax and reactively evaluated
constraints, but required the user to understand and write JavaScript.

HTML Extensions for Web Application Development2.5 6.8 %

Chapter 2 Background & Related Work  2.5 HTML Extensions for Web Application Development

44 /324

Exhibit [7] (and later Dido [55], based on Exhibit) were some of Mavo’s early influences.
Exhibit extended HTML with language elements that visualized and stored editable data
directly in the browser. This approach allowed a web designer to incorporate Dido into
any web design and made Dido independent of any back-end system.

Quilt [40] was one of Mavo’s biggest influences. It extended HTML with a language
for binding an arbitrary web page to a Google spreadsheet “back-end”, enabling web
authors to gain access to lightweight computation without programming. While it
afforded full creative freedom, and lightweight computation, like Mavo, it imposed the
software engineer mindset of data modeling as a separate task, and UIs as views that need
to connect to the data model as a separate step, which can be cognitively taxing for end-
user programmers that tend to be goal-oriented. Additionally, it was by design limited to
spreadsheets as the means for data storage.

“Web Components” is the colloquial term for a set of standardized technologies that allow
developers to encapsulate reusable functionality in HTML elements, and provide an
extensibility point to HTML by allowing the creation of custom elements. While Web
Components require (fairly advanced) JavaScript to create, because they can be packaged
and distributed, the theory is that novices can import them and use them just like native
HTML elements.

Web Components are not an alternative to Mavo: first, novices can only use them, not
create them, and second, they exist at a different level of abstraction than Mavo which
focuses on facilitating data interactions, rather than encapsulating UI functionality.

However, Web Components are complementary to Mavo. Because Mavo leverages
existing HTML elements as foundational building blocks, the addition of custom ele‐
ments through Web Components broadens the range of functionalities available to Mavo
authors. Well-designed Web Components extend Mavo’s capabilities while maintaining
the same low threshold as native HTML elements, thereby expanding Mavo’s utility
without increasing its complexity.

There are several languages designed around transforming data to HTML or simpler
HTML to more complex HTML, in order to automate repetitive templating tasks.

Web Components2.5.1 7.1 %

HTML Transformation Languages2.5.2 7.2 %

Chapter 2 Background & Related Work  2.5 HTML Extensions for Web Application Development

45 /324

Extensible Stylesheet Language Transformations (XSLT) [59] is a language designed for
transforming XML documents into different formats, including HTML. It is primarily
used to transform XML data into a presentable HTML format, applying styles and for‐
matting rules that dictate how the content should be displayed in the browser. XSLT
is powerful in environments where XML is the primary data format, allowing for the
separation of content and presentation, but its syntax is complex and verbose, making it
difficult for non-programmers to use.

Several templating languages also exist (e.g. Handlebars, Mustache, Jinja, etc.) that
allow authors to write HTML templates with placeholders for data, and store the data
separately in a structured format (e.g. JSON, YAML, etc.).

Cascading Tree Sheets [60] was a research language that essentially functioned as a
templating language where both the data and the output were HTML. It allowed authors
to write minimal HTML documents with only the elements required to hold their data,
and add any superfluous presentational markup as transformations of that HTML, speci‐
fied via CTS rules with a CSS-like syntax.

These languages are typically static one-time transformations that produce HTML
from data, not dynamic data bindings.

There has been a great deal of work on both encouraging and extracting structured data
on the web [61]. However, automatic scraping techniques often have errors because they
must infer structure from unstructured or poorly structured text and HTML markup.

Several efforts have been made to define syntaxes and schemas, such as RDFa [62] and
Microdata [63], for publishing structured data in web pages to contribute to the Semantic
Web and Linked Open Data [64]. However, novice users have had little incentive to adopt
these standards — sharing data rarely provides direct benefit to them — and find them
difficult to learn, potentially contributing to their limited adoption on the web.

It appears that the approaches that work best for increasing adoption of semantic web
technologies are those that provide immediate benefits to them, such as search engines
displaying richer results for structured data, or tools using structured data to improve user
interfaces and/or make prose more informative [65].

The Semantic Web and Web Data Extraction2.6 7.4 %

Chapter 2 Background & Related Work  2.6 The Semantic Web and Web Data Extraction

46 /324

Mavo contributes to this line of work by using a standards-compliant syntax that is
machine-readable, yet produces tangible benefits. With Mavo, authors expend effort
because it makes their static website editable or creates a web application. As a side effect,
however, they enrich the Semantic Web by producing structured data.

In the last few decades, several research efforts have focused on how novice programmers
or non-programmers struggle in learning how to program [66–68]. These studies showed
that this is because of the mental models novice programmers build about the notional
machine. Another study found that programming is more difficult than necessary because
it requires solutions to be expressed in ways that are not natural for non-
programmers [69]. The study examined the ways that non-programmers indicate
solutions to common programming tasks, which are often vastly different than the ways
programming languages require solutions to be expressed.

Natural Programming [16, 70, 71] is a research area that aims to make programming
more accessible to non-programmers by studying what syntax and mental models feel
most natural to them, and use these insights in designing languages and systems that
allowing them to express solutions in ways that are more natural to them.

Novice Mental Models & Natural Programming2.7 7.5 %

Chapter 2 Background & Related Work  2.6 The Semantic Web and Web Data Extraction

47 /324

 7,884 words (23 min read)

Languages like HTML and CSS have characteristics that make them more natural [70,
71] to learn and use. They are declarative, reactive, robust and forgiving in terms of syntax.
Authors assemble high-level concepts and constraints, rather than explicit instructions.
Robustness is achieved in different ways across the two (HTML attempts to correct
authoring mistakes, CSS to scope them tightly and ignore them), but both are designed
with resilience and fault tolerance as a design principle.

These desirable properties have given rise to a large community of authors who are
comfortable with HTML and CSS, yet not being comfortble with JavaScript or other
traditional programming languages. While it is difficult to pinpoint the size of this com‐
munity, it is likely large and growing. The ACM cites knowledge of HTML and CSS to
be at the K-12 level of computer literacy [9].

Far more powerful than static pages are web applications that react dynamically to user
actions and interface with back-end data and computation. Even a basic application like a
to-do list needs to store and recall data from a local or remote source, provide a dynamic
interface that supports creation, deletion, and editing of items, and have presentation
varying based on what the user checks off. Creating such applications requires knowledge
of JavaScript and/or other programming languages to support the necessary user interac‐
tion and to interface with a data management system, as well as understanding of some
form of data representation, such as JSON or a relational database.

CHAPTER 3

Mavo: Creating
web applications by
authoring HTML

Introduction3.1 7.8 %

48 /324

Figure3.1 A fully-functional To-Do application made with Mavo, shown with its accompanying code and the starting
HTML mockup. CSS not shown, but is only used for styling.

Static mockup

<body>
<h1>My tasks</h1>
<p>0 done, 1 total

<input type="checkbox" />
Do stuff

</body> Mockup HTML

<body mv-app mv-storage="https://www.dropbox.com/…/todo.txt">
<h1>My tasks</h1>
<p>[count(done)] done, [count(task)] total
<ul mv-list property="task">

<input type="checkbox" property="done" />
Do stuff

</body> Mavo HTML

Mavo app

Chapter 3 Mavo: Creating web applications by authoring HTML  3.1 Introduction

49 /324

There are many frameworks and libraries aiming to simplify creation of such Web
applications. However, all target programmers and still require writing a considerable
amount of code. It is indicative that even implementing a simple to-do application similar
to the one in Figure 3.1 requires hundreds of lines of code:

Framework LOC

AngularJS 294

Polymer 246

Backbone.js 297

React 421

Table3.1 Lines of JavaScript code required to implement a simple to-do application in popular JavaScript frameworks.
Other frameworks are in the same ballpark. Comments not included in the count. Statistics from todomvc.com.

Many people who are comfortable with HTML and CSS do not possess additional pro‐
gramming skills 1 and have little experience articulating data schemas [72]. For these
novice web authors, using a CMS (Content Management System) is often seen as their
only solution. However, research indicates that there are high levels of dissatisfaction with
CMSs [2]. One reason is that CMSs impose narrow constraints on authors in terms of
possible presentation–far narrower than when editing a standalone HTML and CSS doc‐
ument. When an author wishes to go beyond these constraints, they are forced to become
a programmer learning and modifying server-side CMS code.

The problem worsens when authors wish to present structured data [27], which CMSs
enable via plugins. The interfaces for these plugins do not allow authors to edit data in
place on the page; instead they must fill out forms. This loses the direct manipulation ben‐
efits that are a feature of WYSIWYG editors for unstructured content.

Finally, CMSs provide a heavyweight solution when many authors only need to present
and edit a small amount of data. For example, out of the over 7,000 CMS templates

We carried out a snowball sample of web designers using a Twitter account followed by 70,000 Web designers and developers. Of
3,578 respondents, 49% reported little or no programming ability.

1

Chapter 3 Mavo: Creating web applications by authoring HTML  3.1 Introduction

50 /324

http://todomvc.com/
http://localhost:8002/phd/chapters/mavo/#fn-mavo-1
http://localhost:8002/phd/chapters/mavo/#fn-mavo-1

currently provided in ThemeForest.net, a repository of web templates, 39% are for port‐
folio sites, while another 31% are for small business sites.

This chapter presents and evaluates a new language called Mavo 2 that augments
HTML syntax to empower HTML authors to implicitly define data schemas and add
persistence and interactivity. Simply by adding a few HTML attributes, an author can
transform any static HTML document into a dynamic data management application.
Data becomes editable directly in the page, offering the ability to create, update, and
delete data items via a WYSIWYG GUI.

While programmers generally prefer to keep their data schema logic separate from pre‐
sentation definition, end-users may not have the same preferences, and may instead be
frustrated by the need to think about data in two separate places. Indeed, with a certain
category of applications, including most CRUD applications, how the data is laid out on
the page can easily translate to how the data should be organized. For end-users who are
seeking to build these sorts of apps, it may be easier to define a proper schema in tandem
with defining the layout.

Mavo authors never have to articulate a schema separately from their interface or write
data binding code. Instead, authors add attributes to describe which HTML elements
should be editable and how, unwittingly describing their schema by example in the
process. With a few attributes, authors quickly imply complex schemas that would have
required multiple tables and foreign keys in a relational database, without having to think
beyond the interface they are creating. As an added benefit, Mavo’s HTML attributes are
part of the HTML RDFa standard [62] and thus contribute to machine-readable data on
the Web.

Mavo is inspired by the principle of direct manipulation [73] for the creation of the data
model underlying an application. Instead of crafting a data model and then deciding how
to template and edit it, a Mavo author’s manipulation of the visual layout of an applica‐
tion automatically implies the data model that drives that application. In addition, Mavo
does not require the author to create a separate data editing interface. Users simply toggle
an edit mode in their browser by clicking an edit button that Mavo inserts on their web‐
page. Mavo then adds affordances to WYSIWYG-edit whatever data is in view, with

Implicit Data Schema Definition3.1.1 9 %

Open source implementation & demos available at mavo.io
2

Chapter 3 Mavo: Creating web applications by authoring HTML  3.1 Introduction

51 /324

http://themeforest.net/
http://localhost:8002/phd/chapters/mavo/#fn-mavo-2
http://mavo.io/
http://localhost:8002/phd/chapters/mavo/#fn-mavo-2

appropriate editing widgets inferred from the implied types of the elements marked as
data. Mavo can persist data locally or outsource storage to any supported cloud service,
such as Dropbox or Github. Switching between storage backends is a matter of changing
the value of one attribute.

In addition to CRUD functionality, Mavo also embeds Formula² expressions, allowing
users to perform complex calculations on nested data with a natural syntax. Formula² has
been described in detail in Chapter 4.

In contrast to the hundreds of lines of code demanded by the popular frameworks,
Figure 3.1 shows how an HTML mockup can be transformed into a fully functioning to-
do application by adding only 5 lines of Mavo HTML.

Our approach constitutes a novel way for end-users to transform static webpages to
dynamic, data-backed web applications without programming or explicitly defining a sep‐
arate data schema.

From one perspective, this makes Mavo the first client-side CMS, where all function‐
ality is configurable from within the HTML page. But it offers more. In line with the
vision of HTML as a declarative language for describing content so it can be presented
effectively, Mavo extends HTML with a declarative specification of how the data under‐
lying a presentation is structured and can be edited.

Fundamentally a language extension rather than a system, Mavo is completely portable,
with no dependence on any particular web infrastructure, and can thus integrate with any
web system.

Similarly, existing WYSIWYG HTML editors can be used to author Mavo
applications. We offer Mavo as an argument for the benefits of a future HTML language
standard that makes structured data on every page editable, persistent and transformable
via standard HTML, without dependencies.

We conducted a user study with 20 novice web developers in order to test whether they
could use Mavo to turn a static HTML mockup of an application into a fully functional
one, both with HTML we provided and with HTML of their own creation.

We found that the majority of users were easily able to mark up the editable portions of
their mockups to create applications with complex hierarchical schemas.

Chapter 3 Mavo: Creating web applications by authoring HTML  3.2 Related Work

52 /324

Quilt [40] was a system that allowed users to link a Google spreadsheet with a webpage
and provided simple syntax to bind GUI elements with particular cells in the
spreadsheet. Similarly, Gneiss is a live programming environment that incorporates
a spreadsheet editor and allows users to create bindings between GUI elements and
spreadsheet cells [33].

Mavo combines ideas from three prior systems that addressed the downsides of CMSs.
Dido [55] built on Exhibit [7], extending HTML with language elements that visualized
and stored editable data directly in the browser. This approach allowed a web designer to
incorporate Dido into any web design and made Dido independent of any back-end sys‐
tem. Quilt [40] extended HTML with a language for binding an arbitrary web page to a
Google spreadsheet “back-end”, enabling web authors to gain access to lightweight com‐
putation without programming. Gneiss [33, 34] was a web application within which
authors could manage and compute over hierarchical data using an extended spreadsheet
metaphor, then use a graphical front end to interact with that data.

These three systems introduced powerful ideas: extending HTML to mark editable
data in arbitrary web pages, spreadsheet-like light computation, a hierarchical data model,
and independence from back-end functionality. But none of these systems provides all of
these capabilities simultaneously. Dido had no computational capabilities, could not
manage hierarchical data, and was never evaluated. Quilt was dependent on a Google
spreadsheet back-end, which left it unable to manage hierarchical data. Gneiss was a
monolithic web application that only allowed the user to construct web pages from a spe‐
cific palette. It did not offer any way (much less a language) to associate an arbitrarily
designed web page with the hierarchical data Gneiss was managing, which meant that a
web author faced constraints on their design creativity. Gneiss and Quilt both required
users to design their data separately from their web pages.

Mavo is a language that solves the challenge of combining the distinct positive ele‐
ments of this prior work, which are in tension with one another. It defines a simple exten‐
sion to HTML that enables an author to add data management and computation to any
web page. At the same time, it provides a lightweight, spreadsheet-like expression lan‐
guage that is expressed and evaluated in the browser, making Mavo independent of any
particular back-end. The editing and expression language operates on hierarchical data,
avoiding this limitation of traditional spreadsheet computation.

Related Work3.2
9.6 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.2 Related Work

53 /324

The combination of these ideas yields a novel system that is particularly well-suited to
authoring interactive web applications. In Mavo (like Dido), the author focuses entirely
on the design of the web page, then annotates that page with markup describing data and
computation. The web page implies the data model, freeing the author of the need to
abstractly model the data, manage a spreadsheet, or describe bindings between the two.
At the same time, our expression language provides lightweight computation (Quilt and
Gneiss), even on hierarchical data (Gneiss) without relying on any external services
(Dido). Because they are part of the document (Dido), Mavo expressions can refer
directly to data elements elsewhere in the document, instead of requiring a syntactic
detour through references to cells in the associated spreadsheet. Finally, because it is an
HTML language extension (Dido and Quilt), Mavo can be applied to any web page and
authored with any HTML editor, freeing an author from design constraints.

In sum, we believe that the combination of capabilities of Mavo align well with the
needs and the preferred workflow of current web authors. In particular, the independence
of the Mavo authoring language from any back-end system (or even from any particular
front-end interpreter) means that Mavo prototypes a future for HTML and the web
browser itself, where data interaction becomes as much a basic part of web authoring as
paragraphs and colors.

There are many systems that assist novice web developers with building dynamic and
data-backed web applications. The drawback to many of these systems, however, is that
they often require using their own heavyweight authoring and hosting environments, and
they provide pre-made plugins or templates that users can not customize without pro‐
gramming. Examples of such systems include CMSs such as Wordpress, Drupal, or
Joomla. The growing community around static site generators, such as Jekyll [28] is
indicative of the dissatisfaction with rigid, heavyweight CMSs [27]. However, these
require significant technical expertise to configure, and offer no graphical interfaces for
editing data.

In the previous section, we described three systems—Dido [55], Quilt [40], and
Gneiss [33]—from which we draw key insights. However, this work solves challenges in
combining those insights into a single system, incorporates additional ideas, and con‐
tributes useful evaluation of the resulting system. Most importantly, Mavo demonstrates
that the often-hierarchical data model of an application can be incorporated directly into

End-User Web Development3.2.1 10.1 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.2 Related Work

54 /324

the visual design on which a web author is focused, making the data modeling task an
automatic side effect of the creation of the web design. Supporting hierarchical schemas is
critical because they occur naturally in many data-driven apps on the web (53% according
to [27]). Our evaluation studies users working with such hierarchical schemas.

There has been a great deal of work on both encouraging and extracting structured data
on the web [61]. However, automatic scraping techniques often have errors because they
must infer structure from unstructured or poorly structured text and HTML markup.
Several efforts have been made to define syntaxes and schemas, such as RDFa [62] and
Microdata [63], for publishing structured data in web pages to contribute to the Semantic
Web and Linked Open Data [64]. However, novice users have had little incentive to adopt
these standards—sharing data rarely provides direct benefit to them—and find them dif‐
ficult to learn, potentially contributing to their limited adoption on the web. Mavo con‐
tributes to this line of work by using a standards-compliant syntax that is machine-read‐
able. Authors typically do not care about theoretical purity and are motivated to add addi‐
tional markup when they see a tangible benefit. With Mavo, they expend effort because it
makes their static website editable or creates a web application. As a side effect, however,
they enrich the Semantic Web.

A description of the Mavo language follows. Its expression syntax, Formula² is described
in detail in Chapter 4, so here we will focus on how Mavo HTML embeds formulas, and
not their syntax. Similarly, its storage location is specified as a Madata URL (discussed in
Chapter 5), so here we will focus on how Mavo HTML interfaces with Madata, and not
the specifics of where data is stored.

We chose to use declarative, HTML-based syntax instead of new syntax for Mavo
functionality because our target authors are already familiar with HTML elements,
attributes, and classes and because HTML is inherently fault tolerant (Section 1.4.4)
Whenever possible, we reused concepts from other parts of HTML. Using HTML5 as
the base language also means a WYSIWYG editor for Mavo applications can be easily
created by extending any existing WYSIWYG HTML editor — in fact, we discuss an
attempt at this in Chapter 9. But as discussed previously, we consider it a key contribution

The Semantic Web and Web Data Extraction3.2.2 10.5 %

The Mavo Language3.3 10.6 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

55 /324

of Mavo that it is a system-independent language. For example, we expect most Mavo
authors to frequently take advantage of the ability to “view source” and work with arbi‐
trary HTML.

“View source” is an essential methodology for learning and adopting new elements of
web design. It permits authors to copy and tweak others’ designs (even without fully
understanding them) without worrying about new or conflicting system
dependencies [27]. Source editing is essential to let authors circumvent any limitations
imposed by graphical editing tools.

Per [18] and our Design Principles (Section 1.4.1), we want a low threshold (cost to get
started) while allowing users escape the low ceiling (maximum achievable power) of GUI-
based tool builders.

To specify Mavo functionality on an HTML structure, the author places an mv-app
attribute on the enclosing element. Its (optional) value provides an identifier that can be
used to refer to this app’s data from other Mavo apps on the page, and is used in a variety
of other places. If not specified, Mavo looks at the element’s HTML id attribute, and
defaults to a generic identifier (e.g. mavo3) if that’s also not present.

By default, Mavo does not store data anywhere, which can be useful for calculator-type
applications. Authors can specify a storage location via the mv-storage attribute.

The syntax of this attribute is a thin abstraction over a Madata URL (Chapter 5) to
make these easier to specify for novices, and to provide sensible defaults, since Mavo has
more information about the use case at hand.

For example, to store data locally in the browser, the Madata URL is local:foo, where
foo is a unique identifier for the data store. To alleviate novices from having to under‐
stand what a custom protocol is or from the cognitive tax of finding a suitable key, Mavo
uses a local keyword instead, and defaults the key to the app’s identifier.

Similarly, to store data in a remote service, e.g. GitHub, Madata expects a URL that
identifies a specific storage location (e.g. a repository and file path). These do not need to
exist — for storage services with predictable resource URLs (such as GitHub), Madata
will create any resources needed (e.g. files, repositories, etc.). However, simply having to

Creating a Mavo Application3.3.1 10.8 %

Data Persistence3.3.2 10.9 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

56 /324

choose suitable values can still be taxing to the novices who are be using GitHub as a
backend because of its capabilities, but do not necessarily understand its constituent con‐
cepts. To make this easier, Mavo includes a set of defaults for each backend that facilitate
underspecified URLs. To reuse the GitHub example, authors can specify a URL to their
GitHub profile (e.g. github.com/leaverou), and Mavo uses defaults for the repository
name (mv-data) and file name (<app-id>.json). That said, not every backend is conducive
to this — for example a Dropbox URL does not have a predictable structure, and thus for
Dropbox to be used, authors first need to upload an empty file and get a link to it.

By default, mv-storage specifices both the data source, and the data destination. If data
does not yet exist, an empty dataset is rendered, and the data is created upon saving.
However, there are certain common use cases that require more complex logic when
reading data (storing data always goes to mv-storage).

start mv-storagemv-source

mv-init

Render data

Render empty data

No mv-source
Got data

Got data

Got data

No mv-initNo data

No data
No data

Figure3.2 A summary of the data loading algorithm.

Some applications need different backends for reads and writes. These include applications
that transform data and store the result elsewhere, certain performance optimizations, or
simply read-only applications. To enable these use cases, Mavo supports an mv-source
attribute, whose syntax is identical to mv-storage, but it has precedence over mv-storage
for loading data.

For many types of CRUD applications, starting from empty data provides a poor user
experience. Using a certain default dataset if storage is empty can help users better under‐
stand the application’s purpose and functionality, or simply facilitate experimentation,
while still allowing the user’s own data to take precedence once it exists. Mavo supports
an mv-init attribute for this purpose, which is only used if the main data source (either
via mv-storage or mv-source) is empty or unavailable.

Data Loading Overrides 11.1 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

57 /324

https://github.com/leaverou

Our approach to data definition means that end-users define their data by defining the
way they want their data to look on the page. This is in contrast to many systems which
expect their users to define their data model first and then map their model into a view. In
the spirit of direct manipulation, Mavo users are manipulating their data schema by
manipulating the way the data looks. We believe that our approach is more natural for
many designers, permitting them to directly specify their ultimate goal: data that looks a
certain way.

Once Mavo is enabled on an HTML structure, it looks for elements with property or
itemprop attributes within that structure in order to infer the data schema. These ele‐
ments are henceforth referred to as simply properties. If the HTML author is aware of
semantic Web technologies such as RDFa [62] or Microdata [63], these attributes may be
already present in their markup. If not, they don’t need to understand either technology
— authors are simply instructed to use a property attribute to name their element
in order to make it editable and persistent. An example of this usage can be found in
Figure 3.1.

When an element becomes a property, it is associated with a data value. This value is
automatically loaded from and stored to the specified mv-storage location. For many ele‐
ments (e.g.), the natural place for this value to be “presented” is in the element’s
contents. In others, such as or <a>, the natural place for a value is a primary
attribute such as src and href. RDFa [62] defines a small set of such attributes (mainly
href and src), which Microdata [63] extends with many more, which Mavo adopts.

There are many cases where the data value cannot be predicted by these heuristics. For
example, consider the following Mavo HTML fragment:

Since this is an <a> element, its primary attribute is href, but the data value is in the ele‐
ment content. To handle such cases, both RDFa and Microdata use a content attribute as
an escape hatch: If a content attribute is present, it overrides both the element contents,

Data Definition3.3.3
11.3 %

Explicit Primary Attribute 11.5 %

leaverou

HTML

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

58 /324

and the primary attribute. However, this requires duplicating data across where it actually
lives and the content attribute.

Instead, Mavo adds an additional rule to these semantics: an mv-attribute which
allows authors to specify the default primary attribute, with a none value for the element
contents (which is what we would use above).

Properties that contain other properties become grouping elements (objects in program‐
ming terminology); this permits a user to define deep hierarchical schemas implicitly,
simply as a natural consequence of spatial containment. For example, an element with a
student property can contain other elements with name, age, and grade properties, indi‐
cating that these properties “belong” to the student.

A core value proposition of Mavo is automating the large amount of repetitive UI code
that CRUD applications require to manage collections of data. Interactions like adding
items, deleting items (with undo), reordering items via drag-and-drop, plus keyboard
handling for efficiency and accessibility for all of the above, are all automatically handled.

To convert a property into a collection, all that authors need to do is mark what should
be the collection item — i.e. the element that will be repeated — with an mv-multiple or
mv-list-item attribute, or mark the collection itself with an mv-list attribute.

During editing, appropriate controls appear for adding and deleting new elements in
the collection, as seen for the to-do items in Figure 3.1. Collection items can themselves
be complex HTML structures consisting of multiple data-carrying elements and even
nested collections. This enables the author to visually define schemas with one-to-many
relationships.

To author a collection, the author creates one representative example of a collection
item; Mavo uses this as the archetype for any number of collection elements added later.

As discussed earlier, this archetype can contain real data so it resembles actual output
and not just a template, and can also provide default data values for new collection
members.

Objects 11.7 %

Collections

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

59 /324

Originally, there was no HTML representation for the collection itself — mv-multiple
was added to the collection item and was the only way to define a collection. This was not
an issue for purely CRUD applications with very simple computations — it was just
framed as “mv-multiple makes an element repeatable”.

Regardless, putting the attribute on the collection container instead was a common slip,
although easy to self-correct from feedback (see Section 7.1). However, as noted in
Section 7.2, when authoring expressions for hierarchical schemas the lack of an HTML
element to host the entire collection created some confusion.

Additionally, this design created some conceptual inconsistencies. Other Mavo attrib‐
utes (e.g. mv-default or mv-value) had to heuristically determine whether they were
being set on the collection itself or its items, with awkward escape hatches.

As a result, Mavo later adopted a more explicit syntax involving two separate attributes:
mv-list and mv-list-item. However, per Mavo’s philosophy of flexibility and fault toler‐
ance, collections can be defined with only one of the two, and the other will be inferred. If
necessary, suitable container elements to hold the collection or its items will be crated.

The Mavo syntax for naming elements is based on a simplified version of RDFa we call
Loose RDFa that is designed to prioritize learnability over generality.

Its main differences from standard RDFa [62] are as follows:

1. Objects are inferred from the property structure instead of requiring a separate
typeof attribute. Mavo then adds any missing typeof attributes. Authors can
additionally add typeof attributes to explicitly declare objects for cases where the
inference is incorrect.

2. Plain identifiers (rather than URIs or CURIEs [74]) are allowed even when no
vocab is set.

3. typeof values are optional, to declare an object with no specific type.
4. The way primary attributes are inferred (see above), which extends RDFa’s rather

primitive heuristics.

Collection Syntax

Relationship to RDFa 12.1 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

60 /324

Mavo generates UI (user interface) controls for toggling between reading and editing
mode on the page, as well as saving and reverting to the last saved state (if applicable), as
seen at the top of Figure 3.1. In editing mode, Mavo presents a WYSIWYG editing
widget (called the property’s editor) for any property that is (a) not already a form control,
(b) not a computed property, and (c) not explicitly defined as read-only.

Figure3.3 Different types of editing widgets for different types of elements. Clockwise from the top left: , <meter>,
<time>, <a>

In line with its philosophy of implicit data schema definition, Mavo leverages available
HTML semantics to both optimize the editing interface and extract data type informa‐
tion. For instance, a <time> element is expected to hold temporal data, and will be
edited via a date or time picker (depending on its datetime attribute), whereas an
element will be edited via a popup that allows specifying a URL or uploading an image
(Figure 3.3).

These heuristics are intended to both reduce cognitive load on the author and to
encourage the use of semantically appropriate HTML. However, per Mavo’s design prin‐
ciples, inferred information should be escapable (Section 1.4.3). Indeed, both the data
type and the editing widget can be overridden.

Data Editing3.3.4
12.2 %

Customization 12.3 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

61 /324

The inferred data type can be overridden by using the datatype attribute. This is an RDFs
attribute, and thus does not need an mv- prefix, though Mavo uses it more loosely by
accepting plain identifiers like number rather than CURIEs like xsd:number.

The generated editing UI can be customized in a variety of ways. For small tweaks,
such as overridding an attribute, authors can specify attributes with an mv-editor- prefix,
and they are copied to the generated editing widget. For more extensive customization,
authors can provide their own editing widgets by linking to an existing element anywhere
on the page via the mv-editor attribute, whose value is a CSS selector. If no data type is
explicitly specified, this new editor element will be used for inferring it, just like default
editors.

For example, if a property only accepts certain predefined values, authors can express
this by linking to a <select> menu, essentially declaring it as an enum. Any changes to
the linked form element are propagated to the property editors. This way, authors can
have dynamic editing widgets which could even be Mavo apps themselves, such as a
dropdown menu with a list of countries populated from remote data and used across mul‐
tiple Mavo apps.

The aforementioned three attributes—mv-storage, property, and mv-multiple (or mv-
list/mv-list-item) — are sufficient for creating any CRUD content-management appli‐
cation with a hierarchical schema and no computation. However, many CRUD
applications in the wild benefit from lightweight computation, such as displaying a
count of items, summing certain values, or conditionally showing text depending on a
data value.

To accommodate these use cases, Mavo embeds reactive expressions in brackets ([]) in
the HTML, as well as raw within certain attributes (mv-value, mv-if, etc.), called direc‐
tives. Originally, Mavo supported two expression interpreters: (a) raw JavaScript (executed
in a sandbox environment where properties become read-only variables), and (b)
MavoScript, a Formula² precursor. Authors did not specify the flavor they were using.
Instead, expressions would be first parsed as MavoScript expressions, and if that failed, as
JavaScript expressions. This contributed to author confusion, and restricted the evolution
of Formula², so it was quickly abandoned.

Computation3.3.5 12.5 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

62 /324

Our approach to expressions only partially meets the declarative, direct manipulation goal
we described in our motivation. It is challenging to specify computation, an abstract
process, entirely through direct manipulation. The expression language is similar to that in
spreadsheets—fully reactive with no control flow, which nods towards declarative lan‐
guages. The widespread adoption of spreadsheets provides evidence that this type of com‐
putation is within reach of a large population. Furthermore, placing the expression in the
document, precisely where its value will be presented, as opposed to referencing values
computed in a separate model “elsewhere”, fits the spirit of direct manipulation in speci‐
fying the view. During our several user studies many participants volunteered observations
that this was effective.

There are two ways to embed a Formula² expression in HTML.

The first is to use an mv-value attribute, containing the expression. This is more verbose
than the second method, but allows providing a fallback value (which is also used before
the expression is evaluated) and allows Mavo to provide visible feedback when the expres‐
sion is invalid, as there is an element to apply CSS to.

The second is to enclose it in square brackets ([]), which allows placing it anywhere
inside the Mavo instance, including in HTML attributes (but not element names — yet).

To avoid triggering unrelated uses of brackets on individual elements, authors can use
the mv-expressions attribute to customize the syntax or disable expressions altogether
(mv-expressions="none"). The setting is inherited by descendant elements, unless they
have a mv-expressions attribute of their own. For example, for the double-brace expres‐
sions common in many templating libraries, authors can use mv-expressions="{{ }}".

The choice of brackets for delineating expressions was based on the observation that
non-programmers often naturally use this syntax when composing form letters, such as
email templates. In addition, many text editors automatically balance brackets.

An earlier version of Mavo used a more spreadsheet-like =(expression) syntax, but we
found from preliminary user studies that few users realized the spreadsheet connection
and found it difficult to determine where an expression terminated due to parentheses
also being used inside expressions.

Embedding Formula² Expressions in HTML 12.8 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

63 /324

Instead of referencing mysterious row and column coordinates (a common source of
errors in spreadsheets [75]), Formula2 (and by extension Mavo) refers to properties by
name. Every property defined in a Mavo instance becomes a (read-only) variable that can
be used in expressions anywhere in the Mavo instance. The algorithm is described in
detail in Section 4.4.1. These named references are necessary since Mavo has no prede‐
fined grid for row/column references. We consider this necessity a virtue.

We believe this will decrease bugs caused by misdirected references. Indeed, many
spreadsheets offer named ranges to provide this benefit of understandable references (al‐
though no-one used them in our user studies, see Chapter 7). For spreadsheets, perhaps
the main benefit of the row-column references is having formulas with “relative refer‐
ences” (e.g. to adjacent columns) to automatically update as they are copied down into
new rows. But Mavo’s automatic duplication of templates in collections means copies are
never made by the user, obviating the need for this benefit.

Formula² is not restricted to primitive values, but can also operate on lists and objects
(and combinations thereof). Mavo harnesses this via the mv-value attribute. We saw ear‐
lier how mv-value can be used to specify scalar expressions with a fallback. However, mv-
value follows the schema of the element it’s being used on (adapting the data if necessary,
see Section 3.6.2). When used on a collection, it renders its value as collection data and
reactively re-renders the collection items whenever needed. Combined with Formula² list-
valued semantics, this can produce powerful results with very little code. Furthermore, this
dynamic collection can also be named and referenced elsewhere, creating a basic but pow‐
erful abstraction mechanism.

For example, suppose our To-Do app had a priority property for each task, and we
wanted to display the number of tasks per priority (a pivot table). It could be as simple as:

Named References
13 %

Dynamic Collections 13.1 %

<dl property="tasks_per_priority" mv-list mv-value="task by priority">
<dt property="priority">(No priority)</dt>
<dd mv-value="count(task)">0</dd>

</dl>

HTML

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

64 /324

It is worth noting that in collections, the example item can be filled with real data, which
makes the template really look like the output, unlike other templating languages where
the template is filled with visible markup. In addition, this example data can easily
become default values, by using the mv-default attribute without a value. Specifying a
value for mv-default will set the default value to that, which is useful for static defaults.

However, mv-default becomes very powerful when combined with expressions, cre‐
ating reactive defaults. To our knowledge, Mavo is the first novice programming language
to provide reactive defaults.

When a property is set to a reactive default, it gets updated whenever the default value
changes, unelss it has been edited by the user. This effectively provides a data/formula
hybrid which enables many use cases that are otherwise cumbersome or even impossible.

The more obvious use case is facilitating smart defaults that are progresssively refined as
other properties are edited. For example, suppose we have a calendar application whose
events have start_date, end_date, start_time, end_time properties. end_date could
default to start_date if end_time is after start_time, and to one day after start_date
otherwise. It would look like this:

However, there is a large set of use cases where fields are essentially computed via an
expression, but there are some few exceptions where the user might want to override the
computed value. Using mv-default rather than mv-value in these cases preserves
editability and allows the user to override the computed value.

We designed Mavo to be useful to HTML authors across a wide range of skill levels,
including web design professionals. This presents a tension: Web designers want control,
whereas novices want UI to be generated requiring as little involvement as possible.

The approach that Mavo follows is to generate a default UI, but expose hooks for cus‐
tomization at various levels of the ease-of-use to power curve. Smaller customizations can
be done by simply styling the generated Mavo elements with CSS.

Reactive Defaults3.3.6
13.5 %

<time property="end_date" mv-default="[if(end_time > start_time, start_date, start_date + 1 * day())
]">

HTML

UI Customization3.3.7 13.7 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.3 The Mavo Language

65 /324

In addition, authors can provide their own UI elements that replace those generated by
Mavo by using certain class names (such as class="mv-add-task" for a custom “Add
task” button).

For the parts of Mavo most likely to be customized, such as the editing widgets or the
toolbar, Mavo also provides specific attributes for high level customization with low effort
(e.g. see Section 3.3.4.1 for customizing the editor).

Mavo is implemented as a JavaScript library that integrates into a web page to simulate
native support for our syntax. On load, Mavo processes any elements with an mv-storage
attribute and builds an internal Mavo tree representation of the schema (Figure 3.4). It
also inspects every text and attribute node on or inside every element looking for expres‐
sions, and builds corresponding objects for them. For every expression, a JavaScript parser
is used to rewrite binary operations as function calls in order to enable array arithmetic.

Any remote data specified in the mv-storage attribute is then fetched via Madata and
recursively rendered. Every time an object is created during editing or data rendering, it
holds a reference to its corresponding node in the Mavo tree (Figure 3.4), which it uses as
a template. This improves performance by only running costly operations (such as finding
and parsing expressions) once per collection.

When the data in an object changes — via rendering, editing or expression evaluation
— expressions within it or referring to it are re-evaluated to reflect current values. This
occurs in a special execution context where current object data and Mavo functions
appear to be

global scope. ECMAScript 2015 Proxies are used behind the scenes to conditionally
fetch descendant or ancestor properties only when needed, to allow for identifiers to be
case insensitive, to make the variables read-only, and to allow identifier-like strings to
be unquoted.

note
An earlier version of Mavo also supported nesting form elements inside properties to implicitly define an editor
without the indirection of linking to a form element elsewhere, akin to nesting a form element in a <label> to
implicitly associate the two without using a for attribute. However, practice showed that this frequently con‐
flicted with the author’s intent for the form element to be a part of the template, and not an editing hint, and
thus it was removed.

Implementation3.4 13.9 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.4 Implementation

66 /324

Figure3.4 The Mavo tree created for the To-Do app shown in Figure 3.1.

There are APIs in place for third-party developers to add new default editing widgets,
new expression functions, and new storage backends. In addition, Mavo includes a hooks
system for developing plugins that modify how it works on a lower level. For example,
both the inline Mavo debugging tools and most directives are implemented as plugins
and could be removed.

Mavo includes debugging tools that show the current application state, as expandable
tables inside objects (Figure 3.5). This is enabled by placing a mv-debug class on any
ancestor element or adding ?debug to the URL. These tables display current values of all
properties and expressions in their object, and warnings about common errors.
Expressions shown can be edited in place, so that users can experiment in real-time.

Extensibility3.4.1 14.2 %

Debugging3.4.2
Inline Debugging Tools

Chapter 3 Mavo: Creating web applications by authoring HTML  3.4 Implementation

67 /324

Figure3.5 The debug tools in action, showing local values and warnings.

While inline debugging tools may appear to work better with novices, they do produce a
lot of clutter. Furthermore, our first user study reported low levels of author engagement
with those early debugging tools.

We later also implemented a Google Chrome devtools extension (Figure 3.6) for
inspecting the values of Mavo Nodes and experimenting with expressions. The extension
adds a “Mavo” tab to the Element inspector of the built-in browser developer tools that
displays current values, and allows one-off execution of expressions and data updates.
Since property references in Mavo expressions are context sensitive, we used this inspector
in our evaluation to demonstrate context sensitivity to our subjects, and later on in the
study to allow them to quickly experiment with expressions in training tasks.

Later user studies used the Mavo Inspector instead, both to explore data, and to allow
subjects to quickly experiment with expressions in training tasks.

Mavo Inspector 14.3 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.5 Discussion

68 /324

Figure3.6 The Mavo Inspector Chrome extension with a collection item selected in the Elements panel and the expression
count(hobby) evaluated in that context .

In this section we discuss various issues brought up in our design and study of the Mavo
language, and other potential future directions.

Currently, data formatting is automatic. The only type that supports custom formatting is
the <time> element, which can optionally nest an expression for presenting the date/time
to override the default:

Discussion3.5 14.4 %

Data Formatting3.5.1

<time property="start">[date(start)] at [time(start, "seconds")]</time>

HTML

Chapter 3 Mavo: Creating web applications by authoring HTML  3.5 Discussion

69 /324

For example, numbers are automatically formatted in a locale-aware way, with thousands
separators and two decimal places. However, there are cases where authors might want to
override this formatting. For example, in a recipe app, one would typically want to list
ingredients with fractional quantities like “⅜ cups”, rather than “0.375 cups”. This is
already possible by redirecting the number value to an attribute, and using a custom
expression as the element contents:

However, this is essentially a workaround, as its closeness of mapping [76] is poor. A
more direct way to specify formatting would be beneficial, e.g. an attribute dedicated to
this, alongside a richer set of built-in formatters.

Mavo’s approach of designing schmemas by designing the presentation of the data from
those schemas works well because the presentation of data usually reflects its schema. If
we have a collection of objects with properties, we generally expect those objects to be
shown in a list, with each object’s properties presented inside the space allocated to that
object. This is understandable, as the visual grouping conveys relationship to the viewer.
We are simply inverting this process, arranging for the visual grouping to convey informa‐
tion to the underlying data later. Mavo may not be suitable for creating presentations
that conflict strongly with the underlying data schema, should such presentations ever
be wanted.

Mavo is aimed at a broad population of users. There is no hard limit to what it can do,
since JavaScript can be used as an extension point. However, this is not the primary tar‐
get. Our focus is increasing the power payoff for a given investment of effort/learning that
is accessible to novices (Section 1.4.2). Currently, even small web applications require
substantial skill and effort to build. Too often, designers of essentially static websites are
forced to deploy them inside CMSs, only so that their non-technical clients can update
the site content. Mavo frees designers from these CMS constraints by providing an auto‐
matic WYSIWYG content management UI for plain HTML. Plain CRUD apps only
need mv-* attributes “entirely in HTML” without application logic.

[custom_format(amount)]

HTML

Direct Manipulation of Data Schemas3.5.2 14.7 %

Target Users3.5.3 14.8 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.5 Discussion

70 /324

For users who want more, expressions add power: lightweight computation for applica‐
tion logic at a conceptual cost similar to spreadsheets. More complex functions provide
more power, like advanced spreadsheet ones. Our user study traced out this ease/power
curve and showed that most users can work with such expressions.

Although we have focused on Mavo as a tool to support non-programmers, skilled pro‐
gramers can also benefit from the ability to rapidly build dynamic CRUD interfaces.
Even for programmers Mavo brings some of the benefits of data typing to the construc‐
tion of the interface: declaring data types enables the system to provide appropriate input
and data management without demanding that the developer write special purpose code
for the typed content.

The existing Mavo backends save all data in a single JSON file. This is convenient for use
cases involving small amounts of data, and allows using any popular file hosting web ser‐
vice as a backend. However, making multi-user apps possible will create a pressing need
for handling larger amounts of data with Mavo, even to create entire social websites

Mavo already supports displaying and editing part of the data, and already keeps track
of what data has been modified, to highlight unsaved changes. Therefore, it is easy to
implement incremental saving for web services that support it. Implementing a backend
adapter for a cloud database service (e.g. Firebase), will also allow for fetching partial
data. Such backends usually also support server-sent events, which would enable incre‐
mental updates for true bidirectionality.

Mavo encourages semantic web practices by providing incremental value to authors when
they add semantic markup. For example, using suitable HTML elements will produce
more suitable editing widgets, and using good property names is essential for an editing
UI that makes sense, since they are used in a number of places in the generated editing
UI: button labels, tooltips, and input placeholders to name a few.

Additionally, its storage functionality typically produces structured, machine-readable
data, contributing to the Semantic Web through another avenue. In fact, if a vocab
attribute is used in the markup, Mavo will produce valid JSON-LD [77].

Handling Large Amounts of Data3.5.4 15 %

Encouraging Semantic Web Best Practices3.5.5 15.1 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.5 Discussion

71 /324

It could be argued that because of its looser syntax (Section 3.3.3.4), data produced by
Mavo app users are not useful. However, we believe that reducing the burden of creating
structured data and increasing the author perceived value of doing so is the only way to
encourage widespread adoption of structured data practices, and a large quantity of
imperfect structured data is more useful than a small quantity of perfect data created by
the few users with intrinsic motivation to contribute to the Semantic Web.

Using plural instead of singular nouns and vice versa is a common slip of Mavo authors,
since currently the same name is used for both the collection itself, and each item.

As noted in Section 3.3.3.3.1, the current syntax for defining collections consists of two
attributes: mv-list and mv-list-item. While that was not the motivation for the change,
it opens up the possibility of defining a separate name to refer to the collection and its
items (currently an authoring mistake handled by precedence rules).

This would allow using a plural name for the collection itself, and a singular alias for
the items. This would also allow referencing the collection from within each item without
having to do propName.all.

Mavo’s innovation of inferring schema from HTML presentation might be its Achilles’
heel. After Mavo is used to create data, changes to the HTML may result in a mismatch
between the schema of the saved data and the new schema inferred from the HTML,
which could lead to data loss (or perceived data loss, where data is retained but not dis‐
played, creating the appearane of data loss). Similar mismatches can occur when con‐
necting Mavo apps to third-party data with a pre-existing structure that was not created
by the Mavo app. Mavo does automatically handle some changes, such as:

When properties are added, the schema is automatically extended to include them.
When properties are removed, corresponding data is retained and saved, but not
displayed. This protects a user from data loss if they stop displaying a property then
bring it back later. It also enables the creation of multiple Mavo applications oper‐
ating on different parts of the same dataset.

Future Work3.6 15.2 %

Separate Name for Collection and Collection Items3.6.1

Handling Schema Mutations3.6.2

Chapter 3 Mavo: Creating web applications by authoring HTML  3.6 Future Work

72 /324

When a singleton is rendered onto a collection, Mavo heuristically either converts
the single item to a collection of one item or renders a list-valued property of the
singleton, depending on their structure.
When a collection is rendered onto a singleton (e.g. by removing the mv-list/mv-
list-item attributes), the data is retained so it can be brought back later but
anything after the first item is not displayed and cannot be edited or referred to in
expressions.

However, if the disparity between the data schema and the inferred schema is too great,
Mavo will not be able to automatically reconcile them without author intervention. Such
intervention includes:

Using mv-alias to read data from a property with a different (older) name.
Using mv-path to “fast-forward” to a property that is now nested deeper in
the schema.

More complete handling of schema changes and/or better author feedback about how
they are handled are key open questions for Mavo.

This chapter presents Mavo, a system that helps end-users convert static HTML pages to
fully-fledged web applications for managing and transforming structured data. Our user
studies showed that HTML authors can quickly learn use Mavo attributes to transform
static mockups to CRUD applications, and, to a large extent, use Mavo expressions to
perform dynamic calculations and data transformations on the existing data.

Conclusion3.7 15.6 %

Chapter 3 Mavo: Creating web applications by authoring HTML  3.6 Future Work

73 /324

 9,425 words (27 min read)

Figure4.1 A Formula2 formula operating on a shallow hierarchical schema, showcasing implicit scoping (title, done,
due), filtering & grouping operators, and temporal computation. Parentheses around the where expression are added for
clarity — operator precedence rules would produce the same result.

CHAPTER 4

Formula²: A Human-
centric Hierarchical
Formula Language

74 /324

Spreadsheets introduced reactive (aka continuous evaluation [36]), side-effect free formulas
to the massses, and despite the well-known limitations of spreadsheets [78], no other
end-user programming environment has managed to surpass their popularity.

Despite hierarchical data naturally occurring in more than half of data structures
novices organically create [27], few formula languages support hierarchical data
structures. Moreover, the few that do often prioritize compatibility with spreadsheets over
natural programming and general HCI principles.

Formula² (MavoScript in earlier literature [11]) is a formula language designed from
scratch to support hierarchical data structures in a way that is natural for novices and
reduces the amount of abstract thinking about data required.

However, if the research question was simply “How can we design a natural formula lan‐
guage?”, the answer is simple — no structured language can beat natural language at that
— almost by definition. But parsing natural language is resource-intensive and error-
prone, so instead we designed Formula2 to answer the question “What would a formula
language look like if it were designed from scratch today, with the explicit goals of prioritizing
usability, natural programming principles [16, 70], and making common use cases easy, while
still maintaining reasonable parsing and evaluation complexity?”

Indeed, while our user studies repeatedly demonstrated that Formula² was easier for
novices than alternatives, it can be parsed very efficiently with a simple Pratt parser [79].

While Formula² was originally developed for Mavo, it has no dependency on any par‐
ticular host language or system. It could be used on hierarchical spreadsheet-like
applications, compiled to JavaScript and used by JavaScript frameworks, or even used in a
standalone environment against arbitrary data (see Figure 4.1). Consistency with
JavaScript or other web technologies was not a primary design consideration for its syn‐
tax, but was used as a tie-breaker for otherwise equally valid design decisions.

Introduction4.1
15.9 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.2 Related Work

75 /324

Since LANPAR introduced reactive formulas in 1969, and VisiCalc augmented them
them in 1979 with the A1 notation and most of the features we know today [78], a lot of
work has been done to improve on their design.

Gneiss [34, 80] was a spreadsheet system supporting hierarchical data. However, the bulk
of its contributions were in the user interface. Its formula language prioritized compati‐
bility with spreadsheets and thus, included the minimum amount of changes needed to
support hierarchical data. References to data still used the obscure A1 notation, just
extended it for nested data.

SIEUFERD [32] provided a spreadsheet-like hiearchical data interface to a SQL data‐
base, and thus had to design a formula language that could handle hierarchical data.
While it used readable names rather than A1 notation, compatibility with spreadsheets
was a primary design goal. More importantly, the primary means of querying list-valued
data was its interface for visually constructing SQL queries, and thus the formula lan‐
guage is purposefully restricted to scalars as a return value.

Spreadsheet formulas are not the only syntax in wide use for reactive formulas. While
spreadsheet formulas are the most popular end-user programming syntax for reactive for‐
mulas, this section would not be complete without mentioning the many reactive
JavaScript frameworks, such as VueJS [57], Angular [56], or Svelte [81] These frameworks
typically support embedding a restricted subset of JavaScript in HTML, and detect
dependencies by parsing the JavaScript code.

There are many other dataflow languages, such as LabView [82], a visual programming
language for dataflow programming. However, these are typically not designed for end-
users, and are often not reactive in the same sense as spreadsheet formulas. The usability
issues with LabView are well-documented [76].

Related Work4.2
16.1 %

Hierarchical Data in Spreadsheets4.2.1

Reactive Formulas Operating on Databases4.2.2 16.2 %

Reactive JavaScript Frameworks4.2.3 16.3 %

Other Dataflow Languages4.2.4

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.2 Related Work

76 /324

Mashroom [83] was a dataflow language designed for mashups, and operating on nested
tables. While some of its operators were similar to Formula², and it also centered around
aggregation, it required a lot more technical knowledge to use and targeted different
use cases.

In this section we summarize Formula2’s core concepts and syntax. A more detailed
design discussion can be found in Section 4.5.

We define the host environment as the environment in which Formula² is embedded. This
could be a spreadsheet-like application, a no-code visual app builder, a web framework, or
a standalone application that allows the user to directly import data, specify Formula²
expressions, optionally select the context node (see Section 4.4.1), and see the result
(Figure 4.1). We have already seen one host environment, Mavo HTML.

Since Mavo is the only host environment of Formula² that we have seen so far, it may
be unclear where Formula² ends and the host environment begins. Formula² is responsible
for (a) parsing and compling expressions, and (b) evaluating them against an arbitrary
data tree. To maximize flexibility and make it easier to adopt by a variety of host environ‐
ments, monitoring dependencies and re-evaluating expressions at the appropriate times is
handled by the host environment.

It could be argued that this makes Formula2 simply a functional, side-effect free lan‐
guage, since it is the host environment that may (or may not) implement it reactively. For
example, the testing host environment shown in Figure 4.1 does not implement any reac‐
tivity. However, we believe this to be an implementation detail. The language design and
semantics assume a reactive implementation. The fact that it can function (and even be
useful) without reactivity is a testament to its flexibility.

An explicit design goal was to minimize the number of syntactic primitives that need to
be learned, and instead allow as many combinations of these primitives as possible.

Syntax and Core Concepts4.3 16.4 %

Separation of Concerns4.3.1

Syntax and Semantics4.3.2 16.6 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.3 Syntax and Core Concepts

77 /324

Literals: Numbers, strings (enclosed in single quotes, double quotes, or none (see
below)), booleans (true/false), empty values (none)
Identifiers: Any string of letters, numbers, or underscores. $ is also allowed, but is
reserved for predefined Formula2 identifiers.
Function calls are invoked with the usual syntax of functionName(arg1, arg2,
...). Commas are optional, but encouraged.
Operators, which can be unary, binary, ternary, or n-ary.

Complex data types such as lists and groups are also constructed using functions and
operators.

In this section, we present the core concepts that position Formula² in the landscape of
reactive formula languages.

Consider the use case shown in Figure 4.1. If we were using JavaScript, the expression
could look like this:

Going beyond syntactic differences, referencing in JavaScript (and most other program‐
ming languages) is shallow: we cannot reference any task properties without getting ahold
of each task object, and we could do that without iterating over the list of tasks. There are
two levels of indirection to go from the data root to the data we are interested in. This
approach minimizes conflicts, but at the cost of verbosity and complexity.

In natural language, scoping is a way to optionally narrow, not a prerequisite for
meaning. Any known object can be referenced, and the context of the conversation is
implicitly used to resolve it. This process may even involve iteration or even a recursive
walk through the hierarchy of known objects, yet humans handle it effortlessly.

Core Contributions4.4 16.7 %

Implicit Scoping and Aggregation4.4.1

tasks.reduce((acc, task) => {
(acc[month(task.due)] ??= []).push(task.title);

}, {})

JS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.4 Core Contributions

78 /324

We can say “put all dirty dishes in the dishwasher” without needing to specify whether the
dishes are on the table, in the sink, or in the bedroom. We can optionally scope it further,
e.g. “put all dirty dishes from the dinner table in the dishwasher”, but the scope is optional,
and the dirty dishes concept has meaning without it, just broader.

In contrast, while programming languages also have a notion of context, references are
typically more restricted. Context typically simplifies references to identifiers directly
within the current scope, or in ancestor scopes, but that’s about it. Getting descendant or
sibling data typically requires a series of recursive mapping operations. To word the dirty
dishes example using the concepts of most programming languages, we would have
needed to say something like:

Imagine how tedious communication would be if we had to speak like this! And yet, we
have accepted that this is a reasonable way to communicate with computers.

This could explain why scoping and referencing errors are so common among beginner
programmers [67–69]. The need to understand scoping rules, write out lengthy name‐
spaces, or — worse — mapping operations when multiple values are desired are all bar‐
riers to entry. To alleviate this, Formula² uses a novel scoping algorithm that will priori‐
tize explicit references over implicit ones, but will attempt to resolve any known identifier
to the most reasonable author intent, taking into account both the structure of the for‐
mula, the data schema, as well as the placement of the formula relative to the data.

In Formula², any known data identifier can be used anywhere. However, the value(s) it
resolves to depends on the placement of the formula. Every evaluation of a Formula²
expression can be associated with a context node in the data.

This is in contrast with scoping in most programming languages, which is either lexical
(derived from the code hierarchy) or dynamic (derived from the call tree). Typically the
context node would have a spatial association with the formula in the host environment,
for example in Mavo it would be the closest containing property. In a spreadsheet it could
be the cell the formula is in.

“Visit every room in the house and do the following. If there are any dirty dishes on
the floor, put them in the dishwasher. Look for objects with horizontal surfaces, then
look for dirty dishes on them. If you find any, put them in the dishwasher. Now look
inside all containers larger than a plate. If you find any dirty dishes, put them in the
dishwasher. If you find other large enough containers, repeat the process for them too.”

❝

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.4 Core Contributions

79 /324

A given identifier can resolve to a single value or a list of values, depending on the relative
locations of the context node, the data it references, and the data schema.

Conceptually, to resolve the value of an identifier, we perform a breadth-first search 1 on
the data to find the shortest path(s) from the context node to properties with the given
identifier. We then resolve these paths to values. If there are more than one paths, or the
paths cross any arrays (even if they only contain one element), the result is a list of values.

If the property is not found at all, then ancestor nodes are searched for the property.

While this algorithm may sound complex, in practice it affords a more natural way to
reference data, where references largely just work and scoping rarely needs to be explicitly
considered.

Since lists are such common return types, built-in support for list operations is essential.
But Formula² goes a step beyond that, and attempts to blur the line between scalar and
list operations. Its answer to “Am I dealing with a list or a scalar?” is “if you don’t already
know, it shouldn’t matter”, in the sense that the author providing a list or a scalar commu‐
nicates intent, and that intent is generally honored, but whether a function’s return value is
a list or a scalar should largely be irrelevant, except when it’s a predictable consequence of
said author intent.

Part of this is a natural consequence of the scoping algorithm. Since foo.bar looks at
descendant properties via a breadth-first search, the result will be the same whether foo is
a single object with the foo property or a list containing said object as its only element
(since Formula² lists don’t include arbitrary data properties).

Nearly all Formula² operations (functions and operators) are list-aware. Operations on
lists, between lists, or between scalars and lists require no special syntax or functions. They
largely just work.

The algorithm used is simple. Operations (including functions) are defined in terms of
their scalar equivalents.

Transparent List-valued Operations4.4.2 17.4 %

This is a simplification and would result in very poor performance. In practice, the Breadth-First Search is performed on a pre‐
computed schema of the data, and then the paths are resolved on the actual data.

1

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.4 Core Contributions

80 /324

http://localhost:8002/phd/chapters/formula2/#fn-formula2-1
http://localhost:8002/phd/chapters/formula2/#fn-formula2-1

1. When both operands are scalars, the scalar operation is applied.
2. When only one operand is scalar, the result is a list where each list item is the result

of applying the operation to the scalar and the list item.
3. When both operands are lists, the operation is applied element-wise. If the lists

have different lengths, null is used for missing values.

Lists returned from operations are flattened, so that all data is either scalars or lists of
scalars, i.e. authors do not need to deal with lists of lists. This was chosen to limit com‐
plexity, as lists of lists are less common in naturally occurring data structures [27], and
create amgibuities for many operations (e.g. what should count(list) return if list is a
list of lists? The number of lists or the total number of elements?).

We now present the design of Formula², focusing on its syntax and semantics.

The design principle of fault tolerance (Section 1.4.4), permeates many of the design
decisions of Formula²:

Case-insensitivity: Function names and identifiers are case-insensitive, so rating,
Rating, and RATING will resolve to the same result.
Graceful references: Using the narrowing (.) operator on an empty value, does not
produce an error, just a result that is also an empty value.
Unquoted strings: Unquoted strings are allowed, but are a last resort if an identifier
cannot be resolved as data.

Most formulas depend on the values of other data, and should update when those values
change. However, some use cases require access to context data that may change even if

example
For example, if rating is a list of ratings across items, rating > 3 returns a list of boolean values, with true for
ratings over 3 and false for those equal to or lower than 3. This result can then be fed to a count() function, so
that a nicely readable count(rating > 3) returns the number of items with a rating over 3.

Detailed Design Discussion4.5 17.7 %

Fault-tolerance & Flexibility4.5.1 17.8 %

Special Properties4.5.2

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

81 /324

no data has changed, and thus should influence when a formula is recalculated, essentially
adding itself to its dependencies.

For example, a formula that displays the current time in hours and minutes should
update at least every minute, even if no data has changed. In spreadsheets, this is
expressed as a function, NOW(). However, function calls do not update dependencies, so
NOW() has the confusing behavior that it does not actually reflect current time “now”, but
the time the row was last edited (which is a useful piece of information in its own right,
but needs a name that better describes its purpose).

In Formula², such computations are expressed as special, built-in properties beginning
with $. For example, the current time is expressed as $now.

Other examples of special properties are:

$mouse, which provides the current mouse position and updates whenever the
mouse moves.
$hash, which returns the current URL hash (without the # sign) and updates when
the hash changes.
$today, which returns the current date and updates at midnight.

There are also several tree-structural special properties, which are used to navigate the
data tree. For example, $parent to reference the parent of the current context node,
$previous and $next to reference its siblings, $all to go from an item to its containing
list, or $index to get the index of the closest list item (or any list item, when used as a
property)

While the $ prefix is designed to prevent clashes with author identifiers by partitioning
the namespace, we noticed in user studies (see Chapter 7) that authors often forget to use
it, presumably because this is an unnatural use for the $ symbol, which in natural language
is used for currency. It remains an open problem how to partition the namespace in a way
that is more intuitive to authors, without making it overly verbose (as in the case of a
reserved prefix, e.g. f2_now).

In line with its design principle of fault tolerance (Section 1.4.4), Formula² will
attempt to resolve special property identifiers without the $ prefix, but with a lower pri‐
ority than those with the $ prefix, only if no data properties exist with these names. It will
also correctly resolve author identifiers that begin with $.

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

82 /324

Formula² supports the following data types:

Numbers
Strings, enclosed in single or double quotes. Unquoted strings are also supported if
they only consist of identifier-compatible characters, but have lower precedence
than data references. Since the schema can be mutated at runtime, this means their
meaning could change if a new property is added anywhere in the data that
matches the unquoted string.
Booleans, true and false.
Empty values (aka null)
Lists (aka arrays or collections). Lists can contain any data type. There is no dedi‐
cated syntactic construct for lists, instead they are defined via a list() function.
Groups (aka objects or dictionaries), which are sequences of key-value pairs.
Groups are defined using a group() function and a colon to separate keys from
values.

Figure4.2 A JSON object and the corresponding representation in Formula².

The colon (:) is actually an operator that returns an object with a single key-value pair.
The group function merely merges these objects. This has the very nice consequence that
when there is only a single key-value pair, the group() function can be omitted.

Operators are essentially a nicer syntax to improve readability for certain functions, and to
reduce the need for balancing nested parentheses. All operators are also implemented as
functions (but the contrary is not true).

Data Types4.5.3
18.1 %

{
"name": "Lea",
"age": "32",
"hobby": [

"Coding",
"Design",
"Cooking"

]
}

JSON

group(
name: Lea,
age: 32,
hobby: list(

Coding,
Design,
Cooking

)
)

FORMULA²

Operators4.5.4 18.5 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

83 /324

To improve learnability, only widely understood operators are symbols:

common arithmetic operators: +, -, *, /
common comparison operators: >, <, >=, <=, = (and ==), !=,
concatenation: &,
the key-value pair operator: :
the range operator: ..

All other operators are words, including logical operators (and, or, not), a modulo oper‐
ator (mod), filtering (where), grouping (by / as).

These are designed to eliminate many common types of errors across novice program‐
ming and formula languages [75, 84]:

To avoid confusion between = and ==, = and == are both used for comparison.
It is common for + to do double duty: addition or concatenation, heuristically
determined by the operands. This usually leads to errors, when the heuristics predict
author intent incorrectly. Moreover, such a heuristic does not improve ergonomics
since addition and concatenation are fundamentally distinct operations. In
Formula², + is only used for addition, and & is used instead for concatenation. This
allows + to work even when numbers are stored as strings, sparing novices from
having to think about data types.
Unlike most programming or formula languages, comparison operators are n-ary.
For example, 3 < foo < 5 is perfectly legal and equivalent to (3 < foo) and (foo
< 5).

In certain cases, Formula²’s innovation of implicit aggregation becomes its Achilles’ heel.
A big class of these are operations whose operands are not independent, but one operand
is implicitly scoped by the other.

The most trivial such case is the narrowing (or dot) operator, which is used to access prop‐
erties of objects and to narrow down overly broad references.

With most operators, operands are resolved independently. For example, in the schema
shown in Figure 4.1, a formula like title & " " & due would evaluate title to all task

Operators That Affect Scoping4.5.5 18.7 %

Narrowing Operator (.) 18.8 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

84 /324

titles, due to all task due dates, and would then concatenate them element-wise separated
by a space.

However, if the same approach were followed with the dot operator, it would produce
nonsensical results. Imagine if given a reference like students.name we evaluated
students and name separately!

Instead, students essentially adds a constraint to the resolution of name: it says “only
consider name properties that are descendants of students”. Whether this constraint is
implemented by fetching all students objects and then looking within them, or by
resolving name independently and then filtering it, is left up to implementations.

A less obvious example is the filtering operator (where). To enable filtering of list-valued
properties, Formula² supports a where operator and a corresponding filter() function.
The filter() function takes two lists and returns a new list that contains only the ele‐
ments of the first list for which the corresponding element in the second list is not empty,
false, or 0. Any surplus elements in the second list are ignored per existing list operation
semantics (Section 4.4.2).

However, a where b is not simply syntactic sugar for filter(a, b). There is one
common ambiguity that where resolves: should properties referenced in predicates be
resolved by the context node of the expression as a whole, or in a different way? This is
best explained with an example. Consider the schema in Section 4.7.2. Assuming a
decision item context node, what would you expect the expression pro where weight >
2 to return? Presumably, you would strongly suspect it should return pro objects that have
a weight property over 2.

However, if where were naïvely rewritten, it would be equivalent to filter(pro,
weight > 2). Like every function, each argument is resolved separately: pro resolves to all
pros of the context decision, and weight > 2 resolves to a list of booleans …for all
weights — including weights for cons! To get the expected result with the filter()
function, we need to use the narrowing (dot) operator and write filter(pro, pro.weight
> 2).

To prevent this terribly confusing behavior, where is implemented to apply special
scoping rules, to preferentially resolve properties in the second operand as descendants of
the first operand.

Filtering and Grouping Operators (where and by) 18.9 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

85 /324

This is not the same as naïvely prepending identifiers with a narrowing operator involving
the first operand, nor as using the first operand as a context node: When we write
foo.bar, if bar is not found within foo and its descendants, the return value is empty 2.
However, in the case of foo where bar > N, if bar is not found within foo and its
descendants, we do want the search to continue as normal within the context node of the
formula. It could be argued that using foo as a context node and continuing the search to
its ancestors is also reasonable, but in practice that is rarely desirable and has similar issues
as dynamic scoping. The closest rewriting would be (foo.bar or bar)

In some cases, it makes sense to evaluate an identifier using a different context node than
the one of the whole formula. One area where this is needed is nested aggregates, i.e. aggre‐
gates of aggregates. We use nested aggregates when in a hierarchical schema we want to
compute an aggregate within descendant lists and then aggregate the aggregates at a
higher level of the tree.

This may sound obscure in the abstract, but use cases that require nested aggregates are
quite common in data-driven applications. For example, assuming the data schema of a
restaurant review website, “average number of reviews” is a nested aggregate: AVERAGE
of COUNT.

To support this, Formula² supports an explicit scoping operator, in, which evaluates its
first operand in the context of the second operand.

The in operator has slightly different semantics around list values than other operators
(Section 4.4.2): if the second operand (the scope) is a list, the first operand is evaluated
for each item in the list. This is because it actually affects what the first operand resolves
to, so taking its shape into account would create a logical cycle.

The scoping operator facilitates nested aggregates using a concise, natural syntax.
Returning to the restaurant review example, to calculate the average number of reviews
per restaurant, we would write average(count(reviews) in restaurants).

It can also facilitate complex object mapping operations, though the syntax can be a
little more awkward. For example, assume we have a list of right triangles (triangle) as
objects with width and height properties. We can easily calculate a list of hypotenuses
with sqrt(pow(width, 2) + pow(height, 2)), but what if we want to transform

Explicit Scoping Operator (in) 19.2 %

The implementation of Formula² that the Mavo HTML prototype embeds does not actually follow this; a bug that has caused a
lot of confusion.

2

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

86 /324

http://localhost:8002/phd/chapters/formula2/#fn-formula2-2
http://localhost:8002/phd/chapters/formula2/#fn-formula2-2

it to a list of triangles with width, height, and hypoteneuse properties? This would work,
but a novice would be unlikely to write it:

Due to the potential for confusion, its precedence is very high so that authors are forced
to use parentheses to scope expressions with more than one term.

In many common cases, Formula²’s scoping heuristic can save authors time and effort.
However, as with many heuristics, there are cases where the heuristic would incorrectly
predict author intent. Per our design principles (Section 1.4.3), inferred author intent
should be overridable.

For such cases, Formula² provides several ways to disambiguate references, either by
using more narrow scoping, or by providing ways to tweak reference resolution:

If ancestor values are undesirable, a narrowing operator (.) can be used to scope
references to be within a specific object.
Special properties such as $parent, $previous, $next, $item, $this can be used to
navigate the data tree of a given reference.
If the entire list of values is desired from a formula within a list, the $all special
property can be used.

We identified temporal math as a common pain point when working with spreadsheets
and later validated that our hypothesis was true (see Section 7.6). Yet, temporal computa‐
tion is ubiquitous in so many types of web applications, from use cases like personal

group(triangle, hypotenuse: sqrt(pow(width, 2) + pow(height, 2))) in triangle

FORMULA²

Escaping the Scoping Heuristic4.5.6 19.6 %

example
For example, in a list of restaurants, if the formula rating was on or within each restaurant, it would resolve to a
scalar value: the rating of that restaurant. However, if rating is used outside the list of restaurants, it would
resolve to a list of ratings of all restaurants. So what if we want to show where the current restaurant stands com‐
pared to all others in the list?

100 * count(rating.all > rating) / count(rating.all) would give us the percentage of restaurants with a
higher rating than the current one, which would allow us to output things like “Top 5%”.

Easier Temporal Computation4.5.7 19.8 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

87 /324

http://localhost:8002/phd/chapters/formula2/#special
http://localhost:8002/phd/chapters/formula2/#special
http://localhost:8002/phd/chapters/formula2/#special

tracking and project management to simple things like showing the date a post was cre‐
ated, or how long has passed since.

Formula² provides a variety of functions to support manipulating and formatting tem‐
poral values across various points of the ease-of-use to power spectrum.

Dates, times, and date/times are represented as ISO 8601 [85] strings. If a math‐
ematical operator is used with at least one string operand (which cannot be parsed as a
number), Fomula² will check if the string is a temporal value, and will perform a temporal
calculation if so.

This allows authors to specify temporal values by simply specifying them as strings,
with no additional effort to convert them to a specific data type. Since no valid ISO dates
are also valid numbers 3, this is a safe heuristic.

A variety of built-in functions and special properties are provided to make such opera‐
tions natural to read and write.

For example date($today + 1 * day()) will return tomorrow’s date and
duration($now - "2019-07-12", 2) will return how long it has been since July 12th,
2019 in a human-readable format with two terms (e.g. “3 years, 2 months”).

Temporal expressions involving special properties such as $now should be updated by
the host environment at a reasonable rate, up to display’s framerate, to ensure that they are
always up-to-date. While Formula² does not specify optimizations for this (e.g there is
no need to update readable_date($now) at 60 fps), host environments are encouraged to
do so.

The ISO 8601 format also supports timezones, and these are honored in any calcula‐
tions. However, it remains important future work to provide more primitives for their
handling. If no timezone is specified, the user’s local timezone is assumed.

Any functions that produce human readable output (such as many temporal functions)
are locale-aware: the host environment can optionally associate a locale with certain data

Internationalization & Localization4.5.8 20.1 %

The only exception is years, since something like "1997" is actually a valid ISO date. However, this does not participate in the
heuristic discussed here, since if authors are doing math between years, there is nothing special to do — handling them as regular
numbers works fine.

3

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.5 Detailed Design Discussion

88 /324

http://localhost:8002/phd/chapters/formula2/#fn-formula2-3
http://localhost:8002/phd/chapters/formula2/#fn-formula2-3

nodes (any node without a locale inherits the locale of its parent), and output follows this
locale. For example, in Mavo, the locale is derived from the closest HTML lang attrbute.

Here we summarize some architectural considerations for implementing Formula².

Ease and efficiency of parsing was a key design consideration. The entirety of Formula2’s
syntax can be parsed by a simple Pratt parser [79]. In fact, all that is needed to adapt a
Pratt parser intended for JavaScript expressions 4 to a Formula² parser is to simply modify
its operators.

To generate a Pratt parser for Formula², the operator associativities and precedences
are shown in Table 4.1. On a high level 5, an EBNF grammar for Formula² could look
like this:

Architecture4.6

Expression Compilation4.6.1 20.2 %

Grammar

 Expression: Operand | Compound
 Operand: Literal | Identifier | UnaryExpression
 | BinaryExpression | MemberExpression | TernaryExpression
 | CallExpression | '(' Expression ')'
 UnaryOperator: 'not' | '-' | '+'
 UnaryExpression: UnaryOperator Operand
 BinaryOperator: ['<' | '>' | '='] '='? | '!=' | '*' | '/' | '+' | '-'
 | 'mod' | 'and' | 'or' | 'where'
 MemberExpression: [[MemberExpression | Identifier] '.']+ Identifier
 BinaryExpression: Operand BinaryOperator Operand
TernaryExpression: Operand 'by' Operand ['as' Operand]?
 CallExpression: [Identifier | MemberExpression] '(' Compound ? ')'
 Compound: Expression [Separator [Expression | Compound]]+
 Separator: ',' | ';' |

CODE

JSEP: ericsmekens.github.io/jsep
4

The productions do not enforce operator precedence, which is specified seprately, and do not describe the minutiae of number and
string literals, which are on par with JavaScript or similar languages.

5

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.6 Architecture

89 /324

http://localhost:8002/phd/chapters/formula2/#fn-formula2-4
http://localhost:8002/phd/chapters/formula2/#fn-formula2-5
https://ericsmekens.github.io/jsep/
http://localhost:8002/phd/chapters/formula2/#fn-formula2-4
http://localhost:8002/phd/chapters/formula2/#fn-formula2-5

Operator Description Precedence Associativity

() Function call, grouping 15 Left

. Narrowing operator 14 Left

not, -, + Unary operators 13 Right

*, /, mod Multiplication, division, modulus 12 Left

+, - Addition, subtraction 11 Left

<, <=, >, >= Comparison operators 10 Left

=, ==, != Equality operators (equal, not equal) 9 Left

and Logical AND 8 Left

or Logical OR 7 Left

where Filtering operator 4 Right

by / by ... as Grouping operator 3 Right

in Explicit Scoping operator 2 Left

, Separator in function arguments, etc. 1 Left

Table4.1 Precedence and associativity of Formula² operators.

After parsing, a number of AST transforms are applied to the parsed expression.
These include:

 whitespace
 | any other non-alphabetic, non-numeric character
 Literal: Numeric literals (e.g., 1, -42, 3.14)
 | Single or double-quoted string literals
 Identifier: ['$' | letter | '_'] [letter | digit | '_' | '$']*

CODE (continued)

AST Transforms and Desugaring 20.9 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.6 Architecture

90 /324

Flattening logical operators. For example, 3 < foo < 5 will be parsed as (3 < foo)
< 5, which would produce an incorrect result. Only logical operators need to be
flattened. Other operators are either correctly handled via normal precedence rules,
or are associative and thus flattening would make no difference.
Rewriting operators into their equivalent functions (with further rewriting for
operators that affect scoping, see Section 4.5.5).
If the left operand of : is an identifier, it is rewritten to a string literal.

For Formula² to be able to evaluate expressions against a data tree, it first needs to walk
the data tree to understand its structure and to store pointers from data objects to this
stored information.

This involves:

1. Walking the data tree to build a schema (unless this is precomputed by the host
environment). This is not a detailed data schema; for example it does not concern
itself with data types at all. It is simply a nested data structure of all possible prop‐
erty paths to help resolve identifiers.

2. Linking each node to its parent, so that traversal in any direction is possible from
any node.

3. Linking each object to its corresponding schema node, so that traversal in any
direction is possible.

Building a schema is not merely a performance improvement: it is essential for reasonable
identifier resolution. Imagine if the meaning of identifiers changed simply because a col‐
lection happened to have no items at the moment of evaluation! Of course it is also a per‐
formance improvement — performing a breadth first search on the data tree for every
identifier would be prohibitively slow even for modestly sized datasets.

Expression Evaluation4.6.2 21 %

Building a Schema

note
While Formula2 is not dependent on any particular language or system, to avoid excessive abstraction, we will
describe its implementation in terms of JavaScript concepts.

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.6 Architecture

91 /324

The host environment needs to notify Formula² when the data tree changes in a way that
affects the schema so it can be rebuilt, otherwise expression evaluation could be incorrect.

Figure4.3 A data tree on the left and its generated schema on the right. List items are merged into a single schema node,
and arrays win out over scalars.

We now present a few examples that highlight how Formula² provides improved
ergonomics over JS, spreadsheet formula languages, and SQL. Each example schema has
been chosen as a representative example of a common data shape. First, a flat table. Then,
a schema with divergent one-to-many relationships with the same schema. Finally, a
schema with a deeper hierarchical structure.

For the comparison with JS, we will use the scoping convention of many JavaScript
frameworks, that identifiers directly below the context node can be referenced directly, as
well as ancestor properties, but everything else requires explicit scoping.

To compare with spreadsheets and SQL, there is a dilemma: how to best convert a
hierarchical schema to a tabular one to maximize the comparison fairness?

There are three main ways:

{
task: [

{
taskTitle: "Code furiously",
done: true,
tags: ["coding", "fun"],

},
{

taskTitle: "Run user study",
priority: "P2",
tags: "science"

},
"Have a life?"

]
}

JS

{
task: [

{
taskTitle: true,
done: true,
priority: true,
tags: [true]

}
]

}

JS

Comparison with Other Languages4.7 21.6 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

92 /324

1. Denormalization: Flatten the data structure into a single table with repeating val‐
ues, akin to the result of a SQL join.

2. Normalization: Split the data structure into multiple tables, with foreign keys
linking them. 2NF ([86]) is probably sufficient for this.

3. Blank cells: Use blank cells where (1) would repeat values.

The latter is what is most readable to humans and what they often naturally gravitate to,
as it does not require duplication (1), yet does not involve the complexity and indirection
of relations (2). Effectively it is trying to visually emulate a hierarchy, and it works — for
(sighted) humans. However, it is actively discouraged [87] as it breaks any type of data
processing (e.g. formulas, filtering, sorting, etc.).

Repetition is a common way, albeit tedious to manage manually. However, repetition
becomes very awkward when we have divergent one-to-many relationships [32], as is the
case in one of the schemas below. This only leaves us one option: normalization.

In many cases, defining additional data in the host UI (e.g. computed properties in
Mavo, or additional columns in a spreadsheet) would make some of these expressions a
lot simpler, but to ensure a fair comparison, we will only use the data as it is defined in the
schema. Additionally, we know from Section 7.6 that it is a barrier for novices when a
computation requires auxiliary data to be defined in the UI.

For tasks that involve a context node, it is mentioned. Otherwise, the context node is
assumed to be the root of the data tree.

task

taskTitle done priority due

Code furiously true P2 2022-07-12T12:00:00Z

Table4.2 The two schemas: hierarchical and tabular.

Flat Table: The To-Do List Schema4.7.1 21.9 %

{
task: [

{
taskTitle: "Code furiously",
done: true,
priority: "P2",
due: "2022-07-12T12:00:00Z",

}
]

}

JS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

93 /324

This is a variation of the to-do app shown in Section 1.2.

This is a simple aggregation task, so it mainly highlights syntactic differences across the
four languages.

Here we want a data structure that will give us priorities and the number of tasks with
that priority. Aggregate functions like count() have a special behavior with the results of
grouping, and return a list with the counts of all groups. We can get the group names
either as (task by priority).tasktitle or simply unique(taskTitle), since it is guar‐
anteed to produce the same results, in the same order.

The colon operator can help us combine the two into a single object:

This is not possible to do in spreadsheets as the result of a single formula. Spreadsheets
have a dedicated UI feature for this called pivot tables, although no-one tried to use them

Simple Aggregates: Percentage of Tasks Done 22.1 %

count(done) / count(task)

FORMULA²

COUNTIF(B2:B, true) / COUNTA(B2:B)

SPREADSHEETS

task.filter(t => t.done).length / task.length

JS

SELECT count(done) / count(*) FROM task

SQL

Grouped Aggregate: Count Tasks by Priority 22.3 %

unique(taskTitle): count(task by priority)

FORMULA²

aside
But what if a user needs to actually count the groups produced? How does one escape this heuristic (Section
1.4.3)? They can simply apply count() twice: count(count(task by priority)).

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

94 /324

in our study (Section 9.7). The closest we can get with the regular primitives is to add a
column E to the table, place the formula =COUNTIF(C2:C, C2) in E2, and drag it down.

Since UI interactions are not acceptable in this comparison, we will not consider
this option. We could get an arrayformula with a list of strings like “P0: 2”, “P1: 3”, etc.
like this:

In JS, it could look like this:

Although a grouping function has recently been added to the language
(Object.groupBy()), it does not necessarily make aggregation easier:

Contrary to the other two, these tasks are SQL’s bread and butter:

This is a simple temporal computation task. More than showcasing the strengths of
Formula², this task highlights a weakness of the other three languages, in a task that is
very common in data-driven applications.

=TEXTJOIN(", ", TRUE, ARRAYFORMULA(UNIQUE(C2:C7) & ": " & COUNTIF(C2:C7, UNIQUE(C2:C7))))

SPREADSHEETS

task.map(t => t.priority).reduce((acc, p) => {
acc[p] = (acc[p] || 0) + 1;
return acc;

}, {})

JS

Object.fromEntries(
Object.entries(

Object.groupBy(task, t => t.priority)
).map(([k, v]) => [k, v.length])

)

JS

SELECT priority, count(*) FROM task GROUP BY priority

SQL

Temporal: Display Time Left for Each Task 23.1 %

(taskTitle): duration($now - due)

FORMULA²

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

95 /324

The parentheses are needed because otherwise Formula2 would create an object with a
single taskTitle property (rather than evaluate taskTitle) due to the special handling of
the first operand in the colon operator (see Section 4.6.1.2).

Spreadsheets have the same issue as with the previous task: to use a simple formula, we
need to perform UI interactions such as dragging down a formula. Otherwise, our only
recourse is unwieldy arrayformulas.

But here there is a much bigger issue at play: there is no high-level way to express an
interval in a human-readable way. Spreadsheet applications often provide UI for format‐
ting a number as a duration, but this is not available in formulas and typically produces
cryptic separated values of predefined units, so a duration like “2 months, 8 days” may
appear like 936:00:00. Our Lifesheets user study explores this more (see Section 9.7).

Displaying values in any even moderately human-readable way is painful. Even if we
only care about differences of a day or more, we need to do low-level wrangling like:

It gets even worse if we want to show time units as well, as one normally would in a task
manager:

The ARRAYFORMULA version of this is left as an exercise for the reader.

JavaScript also does not provide a built-in way to format durations in a human-read‐
able way. In practice, this is often done with a library like moment.js or date-fns, but for
the sake of comparison, we will use a simple, naïve implementation:

=TRIM(SUBSTITUTE(
IF(DATEDIF(D1, NOW(), "Y") > 0, DATEDIF(D1, NOW(), "Y") & " years, ", "") &
IF(DATEDIF(D1, NOW(), "YM") > 0, DATEDIF(D1, NOW(), "YM") & " months, ", "") &
IF(DATEDIF(D1, NOW(), "MD") > 0, DATEDIF(D1, NOW(), "MD") & " days", ""),
", ", ""))

SPREADSHEETS

=TRIM(SUBSTITUTE(
IF(DATEDIF(D1, NOW(), "Y") > 0, DATEDIF(D1, NOW(), "Y") & " years, ", "") &
IF(DATEDIF(D1, NOW(), "YM") > 0, DATEDIF(D1, NOW(), "YM") & " months, ", "") &
IF(DATEDIF(D1, NOW(), "MD") > 0, DATEDIF(D1, NOW(), "MD") & " days, ", "") &
IF(INT(NOW() - D1) = 0, IF(HOUR(NOW() - D1) > 0, HOUR(NOW() - D1) & " hours, ", "") &
IF(MINUTE(NOW() - D1) > 0, MINUTE(NOW() - D1) & " minutes", ""), "") &
IF(HOUR(NOW() - D1 - INT(NOW() - D1)) > 0, HOUR(NOW() - D1 - INT(NOW() - D1)) & " hours, ", "") &
IF(MINUTE(NOW() - D1 - INT(NOW() - D1)) > 0, MINUTE(NOW() - D1 - INT(NOW() - D1)) & " minutes", ""),
", ", ""))

SPREADSHEETS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

96 /324

Standard SQL is not well-suited for this task either, as it is not designed for temporal
computations. It is possible to do it, but it is also not pretty:

PostgreSQL however has an age() function that can make this very elegant:

This is the (Mavo-inferred) schema from the decision-making application that was used
in the first lab study (Section 7.1). It’s a hierarchical schema with two levels of nesting,
where each decision item contains divergent one-to-many relationships.

task.map(t => {
let start = new Date(task.due);
let end = new Date();
let elapsed = now - start;
let units = [

{ unit: 'year', ms: 365 * 24 * 60 * 60 * 1000 },
{ unit: 'month', ms: 30 * 24 * 60 * 60 * 1000 },
{ unit: 'day', ms: 24 * 60 * 60 * 1000 },
{ unit: 'hour', ms: 60 * 60 * 1000 },
{ unit: 'minute', ms: 60 * 1000 }

];

let rtf = new Intl.RelativeTimeFormat('en', { numeric: 'auto' });

return units.reduce((result, { unit, ms }) => {
const value = Math.floor(elapsed / ms);
if (value !== 0) {

result.push(rtf.format(-value, unit)); // Negative value to represent the past
elapsed -= value * ms;

}
return result;

}, []).join(', ');
});

JS

SELECT taskTitle, CONCAT(
IF(YEAR(due) - YEAR(NOW()) > 0, YEAR(due) - YEAR(NOW()) & " years, ", ""),
IF(MONTH(due) - MONTH(NOW()) > 0, MONTH(due) - MONTH(NOW()) & " months, ", ""),
IF(DAY(due) - DAY(NOW()) > 0, DAY(due) - DAY(NOW()) & " days, ", ""),
IF(HOUR(due) - HOUR(NOW()) > 0, HOUR(due) - HOUR(NOW()) & " hours, ", ""),
IF(MINUTE(due) - MINUTE(NOW()) > 0, MINUTE(due) - MINUTE(NOW()) & " minutes", "")

) FROM task

SQL

SELECT taskTitle, age(due, NOW()) FROM task

SQL

Divergent 1-N Relationships: The Decisions App Schema4.7.2 26.7 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

97 /324

Figure4.4 A sample application using data with this schema.

decision

id decision score answer

1 Should I go to the party?

2 Should I move?

pro

did argument weight

1 Fun with friends! 3

2 Reduced rent by $500 2

con

did argument weight

1 I have tons of work 1

1 I will need to buy a present 1

2 Expensive moving costs 3

Figure4.5 The two schemas: hierarchical and tabular.

{
decision: [

{
decision: "Should I go to the party?",
answer: null, // calculated
score: null, // calculated
pro: [

{ argument: "Fun with friends!", weight: 3 }
],
con: [

{ argument: "I have tons of work", weight: 1 },
{ argument: "I will need to buy a present", weight: 1 }

]
},
{

decision: "Should I move?",
answer: null, // calculated
score: null, // calculated
pro: [

{ argument: "Reduced rent by $500", weight: 2 }
],
con: [

{ argument: "Expensive moving costs", weight: 3 }
]

}
]

}

JS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

98 /324

Context node: decision.*

This highlights aggregates that span two separate branches.

or

Since SQL does not have a context node concept, we calculate all scores:

Calculate the Score of Each Decision
27.4 %

sum(pro.weight - con.weight)

FORMULA²

sum(pro.weight) - sum(con.weight)

FORMULA²

SUMIF(pro!A2:A, A2, pro!C2:C) - SUMIF(con!A2:A, A2, con!C2:C)

SPREADSHEETS

pro.filter(p => p.decision_id == decision.id)
 .reduce((acc, p) => acc + p.weight, 0)
-
con.filter(c => c.decision_id == decision.id)
 .reduce((acc, c) => acc + c.weight, 0)

JS

SELECT decision.id, sum(pro.weight) - sum(con.weight)
FROM decision
LEFT JOIN pro ON decision.id = pro.did
LEFT JOIN con ON decision.id = con.did
GROUP BY decision.id

SQL

Filtered Aggregate: Count of Good (Score > 0) Decisions 28 %

count(score > 0)

FORMULA²

COUNTIF(score!A2:A, ">0")

SPREADSHEETS

decision.filter(s => s.score > 0).length

JS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

99 /324

This compares nested aggregates across different languages.

or

This is the schema from the restaurant review log that was used in the first lab study
(Section 7.1). It’s a hierarchical schema with three levels of nesting.

SELECT count(*)
FROM decision
WHERE score > 0

SQL

Nested Aggregate: Average Number of Arguments per Decision 28.2 %

average(count(pro) in decision + count(con) in
decision)

FORMULA²

average((count(pro) + count(con)) in decision)

FORMULA²

=(SUMPRODUCT((pro!A:A=decision!A2:A3)+0) + SUMPRODUCT((con!A:A=decision!A2:A3)+0)) /
COUNTA(decision!A2:A3)

SPREADSHEETS

decision.map(d => d.pro.length + d.con.length) / decision.length

JS

SELECT
 d.id,
 d.decision,
 AVG(argument_count) AS average_arguments
FROM
 (SELECT
 p.did AS id,
 COUNT(p.argument) + COUNT(c.argument) AS argument_count
 FROM
 pro p
 LEFT JOIN
 con c ON p.did = c.did
 GROUP BY
 p.did) AS argument_counts
JOIN
 decision d ON d.id = argument_counts.id
GROUP BY
 d.id, d.decision;

SQL

Deep Nesting: The Restaurant Reviews Schema4.7.3 28.9 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

100 /324

restaurant

id picture url name

1 “redacted.jpg” “redacted” Toscano

visit

rid date title

1 2016-03-15 Date night!

dish

vid name dishRating

1 Filet mignon with black
truffle and foie gras

4

Figure4.6 The two schemas: hierarchical and tabular.

Context node: restaurant.*

A restaurant’s rating is the average of all visit ratings, and the visit rating is the average
of all dish ratings.

{
"restaurant": [

{
"picture": "https://www.toscanoboston.com/common/images/thumb-cucina.jpg",
"url": "http://www.toscanoboston.com/beacon-hill",
"name": "Toscano",
"visit": [

{
"date": "2016-03-15",
"title": "Date night!",
"dish": [

{
"name": "Filet mignon with black truffle and foie gras",
"dishRating": 4

}
]

}
]

}
]

}

JS

Nested Aggregate (2 Levels): Restaurant Rating 29.3 %

average(average(dishRating) in visit)

FORMULA²

AVERAGEIFS(
 dish!C:C,
 dish!A:A,
 IF(
 ISNUMBER(MATCH(visit!A:A,
 IF(restaurant!A:A = A2, visit!A:A, ""),
 0
)),
 visit!A:A,
 ""
)
)

SPREADSHEETS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

101 /324

https://redacted/

We define a restaurant as good if its rating is above 3. This is a nested aggregate with three
levels of aggregation, and a filter.

visit.map(v => v.dishRating.reduce((acc, c) => acc + c, 0) / v.dishRating.length) / visit.length

JS

SELECT
r.id AS restaurant_id,
r.name AS restaurant_name,
AVG(vr.average_dish_rating) AS restaurant_rating

FROM restaurant r
JOIN visit v ON r.id = v.rid
JOIN

(
SELECT vid, AVG(dishRating) AS average_dish_rating
FROM dish
GROUP BY vid

) vr ON v.rid = vr.vid
GROUP BY

r.id, r.name;

SQL

Filtered Nested Aggregate: Count of Good Restaurants 30.1 %

count((average(average(dishRating) in visit) in restaurant) > 3)

FORMULA²

SUMPRODUCT(
 IF(
 MMULT(
 (visit!A:A = restaurant!A2:A100) *
 TRANSPOSE((dish!A:A = visit!A:A) * dish!C:C),
 TRANSPOSE((visit!A:A = restaurant!A2:A100) * (visit!A:A <> ""))
) > 3,
 1,
 0
)
)

SPREADSHEETS

restaurant.map(r => r.visit.map(v => v.dishRating.reduce((acc, c) => acc + c, 0) /
v.dishRating.length) / r.visit.length).filter(r => r > 3).length

JS

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.7 Comparison with Other Languages

102 /324

Formula2 was designed to make the kinds of computations that are common in small-
scale data-driven applications easier to express by novices. There are numerous use cases
arising in general application development that are currently either awkward or impos‐
sible to express in Formula2.

While Formula2 can express simple mapping operations very easily, such as mapping
objects to a descendant property or a combination of descendant properties, many of the
kinds of arbitrary mapping operations that a developer can accomplish in an imperative
language via a loop are not possible, or awkward to express with Formula2 alone.

A large class of such use cases is augmenting objects, such as the triangle hypotenuse
example in Section 4.5.5.3, which can be expressed but the formula to express them is
beyond the capabilities of most novices.

WITH restaurant_ratings AS (
SELECT

r.id AS restaurant_id,
AVG(vr.average_dish_rating) AS restaurant_rating

FROM restaurant r
JOIN visit v ON r.id = v.rid
JOIN (

SELECT
vid,
AVG(dishRating) AS average_dish_rating

FROM dish
GROUP BY vid

) vr ON v.id = vr.vid
GROUP BY r.id

)
SELECT COUNT(*) AS good_restaurant_count
FROM restaurant_ratings
WHERE restaurant_rating > 3;

SQL

Discussion & Future Work4.8 31 %

Limitations4.8.1

Complex Mapping Operations 31.1 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.8 Discussion & Future Work

103 /324

One big category is parsing tasks: producing structured data from a string of text, for
example color components from a serialized color, or SVG path segment information
from an SVG path string (see Section 8.2.1).

Perhaps a novice-friendly way to express simple patterns could be developed and
exposed in Formula2 via suitable functions, but currently this remains an open question.

Possibly one of the most questionable design decisions of Formula2 is its flattening of
multi-dimensional arrays. E.g. list(1, list(2, 3), list(4, 5)) is flattened to list(1,
2, 3, 4, 5). The intent behind this was to simplify the number of distinct cases that
need to be handled, since these structures did not naturally occur in Mavo apps, and since
every multi-dimensional array can be expressed as an array of objects.

However, since the original design, some cases have emerged where this flattening is
undesirable. The main example is grouping by nested lists. Consider a list of people
(person), each of whom has a list of hobbies (just a list of strings) (hobby). Currently,
person by hobby would not produce a reasonable result, since it depends on element-
wise matching.

Perhaps a compromise solution could be to use a data structure that behaves like a flat‐
tened array, but is not actually flattened. Or the opposite: a flattened array that preserves
metadata about the boundaries of its constituent arrays.

We opted for a functional syntax, as it appears to be easier for novices to understand, and
may be familiar from spreadsheets. We hypothesized that for example, count(rating) is
easier to understand than rating.count(). However, it does come with the drawback of
authors having to manage nested parentheses, a common authoring mistake. Additionally,
if some functions are available as functions and some as methods, it increases the cognitive
load on the author to remember which is which.

In line with our design principle of robustness, it appears an optional dot notation
could greatly increase the efficiency and safety of Formula², without compromising its
learnability.

String Parsing
31.2 %

Is Flattening Always the Right Choice?4.8.2

Dot Notation for Function Calls4.8.3 31.3 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.8 Discussion & Future Work

104 /324

Rather than authors having to remember which functions are methods, every function
would be available as a method and vice versa. arg.foo(arg1, arg2) would be equivalent
to foo(arg, arg1, arg2).

This would allow authors to use the syntax that is most convenient for their use case,
and feels most natural to them, without introducing additional error conditions or cogni‐
tive tax.

We have repeatedly seen in our user studies that novices struggle with the concept of
identifiers having a restricted syntax. Furthermore, imposing restrictions on identifier
names makes it awkward to work with data created by others, which may not conform to
these restrictions.

To prevent syntactic ambiguity, allowing unrestricted identifiers would require a
different syntax to tell the parser that a series of symbols is actually an identifier, and
delineate where it begins and ends.

It appears that brackets ([]) could be a good fit for this purpose, and have some prece‐
dent ([32]). However, this would require substantial changes in Mavo, which uses
brackets to embed Formula² expressions in literal text.

For functions returning a numerical value with no arguments, and constants, it is often
more readable to be able to express multiplications with a fixed number as a number with
a unit.

For example, date($today + 2 * days()) will return the date two days from now. But
it might be a lot more natural if we could write date($today + 2days). Or, rather than
calculating a circle’s circumference as radius * 2 * pi, it may be more readable to write
radius * 2pi.

Formula² could implement this as a general language construct: a number followed by
an identifier is syntactic sugar for the multiplication of the number and the value of the
identifier if the identifier is a number, or the value of calling the identifier as a function
with no arguments if the identifier is a function. This could be a property of specific func‐
tions, since it only makes sense for a relatively small percentage of functions.
Alternatively, the number and type of quantity could be retained in an object that can be

Notation for Unrestricted Identifiers4.8.4 31.5 %

Quantities as a First-class Citizen4.8.5 31.6 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.8 Discussion & Future Work

105 /324

coearced to a number when needed. This could allow expressing a lot more values as first-
class citizens, e.g. currencies, temperatures, measurements, etc.

While performance optimizations do not affect the language itself, in practice they can
have a significant impact on the user experience. Currently, the only performance opti‐
mization that the prototype implementation of Formula2 employs is the use of a schema
to precompute all possible property paths. Even caching the result of an expression so
that expressions are not re-evaluated if the data has not changed, is relegated to the host
environment.

However, given the lack of abstractions in the formulas novices write (see [88] and
Section 9.8), more elaborate caching mechanisms are essential. By moving caching within
Formula2, individual operands can be independently cached, so that for example task by
priority and count(task by priority) only needs to compute the grouping once.

Additionally, a common pattern we have observed (see Chapter 7) is for certain proper‐
ties to be repeatedly used to filter the same structure, often acting essentially as implicit
primary keys.

For an illustrative example, consider a collection of books and their metadata (possibly
fetched from a remote API), and a reading log with a list of books read, ratings, and
notes, maintained by the app user. The app author could display a dropdown of books to
associate each entry with, and store the selected book ID in a bookId property.

Then, to display book metadata next to each entry, the author would have to run a fil‐
tering operation such as books where id = bookId. The problem with that is that this
would iterate over the entire books collection for each entry, making lookups O(N2).

These types of tasks are the bread and butter of relational database systems: you simply
declare bookId as a foreign key, and assuming book.id is a primary key, the database will
take care of the rest. However, this is nontrivial for novices and end-user programmers,
who struggle to think in terms of relations [51] and are goal-oriented, and therefore
averse to preparatory work such as setting up schemas and indices.

However, perhaps end-users don’t need to do this work. Assuming Formula2 provided a
mechanism for declaring primary keys and indices, creating them could be handled by the
host environment, which has a lot more information about what expressions may be eval‐
uated and how frequently. To use Mavo as an example, a simple heuristic would be to

Optimizing Frequent Lookups4.8.6 31.7 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.8 Discussion & Future Work

106 /324

automatically create indices for any property used in a where or by clause within a
collection.

Another (not mutually exclusive) direction could be for Formula2 to automatically
optimize expressions based on a combination of factors such as how frequently they are
evaluated, and how large the collections they operate on are.

Most common programming languages support short-circuit evaluation for logical and
conditional(ternary) operators. Later operands are only evaluated if earlier operands do
not suffice to determine the value of the expression. For example, in a and b, if a is false,
b is not evaluated, since we already know that the overall value must be false.

Due to its handling of list-valued operations, Formula² cannot support short-circuit
evaluation, as all operands need to be examined to determine the shape of the result.

This is not an issue for its use as a reactive formula language, but becomes one once side
effects are introduced (such as by Data Update Actions, see Section 6.3.4).

In this chapter, we presented Formula2, a formula language designed for end-user pro‐
gramming in data-driven web applications, and optimized for hierarchical schemas.

Our user studies (described in Chapter 7) have shown that Formula2 is easy to learn for
novices, who often did not believe that expressions they wrote could work.

While Mavo is currently the only deployed Formula2 host environment, we believe
its potential is much broader, and look forward to seeing additional implementations in
the wild.

Short-circuit Evaluation4.8.7 32 %

Conclusion4.9 32.1 %

Chapter 4 Formula²: A Human-centric Hierarchical Formula Language  4.9 Conclusion

107 /324

 5,102 words (15 min read)

Figure5.1 Our experimental visual app builder Lifesheets (Chapter 9) is also the first prototype of a GUI application
using Madata to offer users the freedom of being able to store their data in any location they choose.

One of the big innovations of the Web [3] was that it unified the process of accessing a
remote document and encoded all the information needed for the (previously) multi-step
process of conncting to the right FTP server, navigating the remote filesystem to find the
right file, downloading the resource, and opening it in the right application into a single
step: loading a URL in the browser. However, when it comes to writing data to the Web,

CHAPTER 5

Madata: Facilitating
Data Ownership by
Democratizing Data Access

Introduction5.1 32.5 %

108 /324

we still need to deal with complex, multi-step processes and disparity between APIs and
data formats.

As a result, most systems that store user data do so either locally or (more frequently)
on a single cloud service they control. Users have little to no data portability; effectively
locking them into the service. Part of this is the common need for services to control user
data. However, another component is simply that supporting user selection for data
storage is really hard.

While reading data from remote sources is generally easy, persisting data remotely is
one of the big usability cliffs of the web platform. Despite it being such a common need,
implementing it requires understanding of many programming concepts which are non-
trivial for programmers and entirely out of reach for beginners.

Worse, even after investing the effort to understand and use a specific authentication
and storage mechanism, interfacing with a different service requires learning a completely
new API.

Madata is a set of simple protocols and JavaScript APIs 1 that allows web applications
to read and store data in a variety of locations, serialized in a variety of formats, all with
the same unified API. Programmers can support additional services without any changes
to their application code, as Madata abstracts differences between services away into a
single API.

Since one of the primary goals is portability, inspired by the usability innovations of
the Web, Madata introduces the concept of a storage URL. The storage location can be
uniquely identified via a URL, from which Madata infers which service to use, the loca‐
tion of the data within the service, and how to access it. This prototypes a future where
users can decide where their data is stored by simply entering a URL in the settings of the
application they are using.

Most remote services require authentication, which is a complex process that requires
registering an OAuth [13, 14] application and writing code to handle the authentication
flow which involves a multi-step handshake. Madata simplifies this process by intro‐
ducing the concept of a federated authentication provider or FedAP. A FedAP is a server
that securely stores API keys for specific OAuth appliations in its supported services.

Source code and documentation is available at madata.dev.
1

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.1 Introduction

109 /324

http://localhost:8002/phd/chapters/madata/#fn-madata-1
https://madata.dev/
http://localhost:8002/phd/chapters/madata/#fn-madata-1

Instead of requiring developers to register a new application to experiment with a new
API, FEDs allow several developers to share the same OAuth application. Developers
have the option to use their own API keys that are not shared, but they don’t need to.

This flow also provides user experience benefits to end-users: once they have logged in
to a FED, they can log in to any app using the same FED with two clicks. Any server can
become an authentication provider by implementing a simple API (Section 5.5.3).

While the Madata client library that requires programming to use, it has been designed
to minimize the “gulf of evaluation” [89] and to maximize “closeness of mapping” [76]
between the user’s mental model and the API. It is indicative that Mavo [11], which tar‐
gets non-programmers, provides an HTML-based API which is a thin abstraction layer
over Madata objects and components.

While portability in terms of storage location is the core focus of Madata, it also allows
for data portability in terms of data serialization format. Portability of format is essential for
data longevity, as it allows data to be migrated to new formats as old ones become obso‐
lete. While defaulting to JSON, Madata seamlessly parses and serializes data in a variety
of formats, including CSV, YAML, TOML, BiBTeX, and more.

The European Union establishes data portability as a fundamental human right [15].
By making it easier for developers to offer end-users data portability than not to, Madata
prototypes a future where data portability (and the data ownership it begets) are not a
rare exception, but the norm.

WebDAV [90–93] was a protocol with very similar goals to Madata. It was developed in
the late 1990s as an extension to HTTP to enable users to collaboratively edit and
manage files on remote web servers. Despite its promising features, WebDAV failed to
achieve widespread adoption beyond certain niche domains. Some of the reasons were
related to its high complexity which created performance issues, and its proneness to net‐
work effects, as it required web server support. Instead of attempting to replace existing
protocols, Madata is designed to “pave the cowpaths” by reducting the friction of inter‐
facing with them.

Related Work5.2 33.1 %

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.2 Related Work

110 /324

The Solid Platform [94, 95] has very similar goals as Madata. Solid is a decentralized
platform for social Web applications. Like Madata, user data is managed independently of
the applications that create and consume this data. User data is stored in a Web-accessible
personal online datastore (or pod). Like Madata, Solid allows users to store data in many
different providers, and easily switch between providers. However, the solution Solid is
proposing is more heavyweight and involves higher complexity and more cognitive
burden for end-users. Solid’s approach requires users to understand concepts such as Pods
and Linked Data, which can be complex for non-technical users, compared to Madata’s
simple URL-based approach, which imposes no requirements or demands on the data
being exchanged. But most importantly, Solid requires adoption by the storage providers,
thus being subject to network effects, while Madata can work with any service that pro‐
vides a Web API.

Two very relevant projects that came after Madata are Scrapir [96] and Shapir [97],
tackling similar goals of standardizing and democratizing access to disparate Web APIs.
Scrapir [96] takes an assisted collaborative approach, with somewhat technical users
adding support for new services via a GUI, so that non-technical users can then use those
services. Shapir [97] also tackles similar goals of standardizing various Web APIs by map‐
ping them to schema.org [98] entities that can then be read and written by modifying
regular JavaScript objects. While there is some intersection, both of these are focused
around reading and writing third-party data, while Madata is focused on reading and
writing arbitrary user data.

A backend class (or for short, backend) tells Madata how to interface with a specific type of
storage location. This is often a remote service (e.g. GitHub, Google Sheets, Dropbox),
but it can be any I/O mechanism that supports hierarchical data. For example, there are
backends like:

Local for storing data locally in the browser (localStorage object)
Element for “storing” data as another element’s content (mainly useful for
debugging)
URL for “storing” small amounts of data as parameters of the current URL.

Main Concepts5.3 33.4 %

Backend Classes5.3.1

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

111 /324

http://schema.org/

Not all backend classes provide the same capabilities. Backend classes declare which capa‐
bilities they support (write, login, upload). Applications using Madata can then read this
information and adjust their UI accordingly or communicate to the user that their selec‐
tion of backend is unsuitable for the current operation.

Backend

AuthBackend

OAuthBackend

Coda

CodaAPI CodaTable

Dropbox

Element

Firebase

Github

GithubAPI GithubFile GithubGist

GithubLabels

Gitlab Google

GoogleCalendar GoogleDrive GoogleSheets

Local Remote

Figure5.2 The hierarchy of backend classes in Madata's prototype implementation as of August 2024. Abstract classes
shown in green.

Backends are organized in a hierarchy, with common patterns implemented in base
classes. For example, the Google Sheets backend and the Google Drive backend both
share the same parent backend, which defines authentication for many Google™ services
(Figure 5.2).

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

112 /324

A backend instance encapsulates a specific storage location within a specific backend class.
For example, a specific sheet in a Google Sheets spreadsheet, a specific file on Dropbox, or
a specific key in the browser’s localStorage.

In some cases the boundaries of what should be an object in a hierarchical data struc‐
ture vs a separate backend object can be blurry. For example, should a spreadsheet
backend object represent the entire spreadsheet, by returning an object with keys for every
sheet, or a single sheet? The current Google Sheets backend has opted for the latter, as
many use cases only involve a single sheet, and thus having to deal with an extra level of
nesting would be cumbersome. However, both options are defensible.

As a design principle, it should be possible to identify storage locations by specifying a
URL. While a URL should unambiguously identify the storage location, the same storage
location may be described by multiple URLs. The URL should be either easy to compose,
or easy to obtain from the service itself, and ideally both.

For example, one of the supported URLs for GitHub is the URL shown in the browser
when viewing a file on GitHub. Or, the URL for a Dropbox file is the URL obtained
when using its “Share file” UI feature.

Storage URLs are merely a portable way to represent the information needed to access
a storage location. They do not need to be URLs browsers can natively load or actually
resolve to the resource, altough both of these are desirable properties, as they assist with
debugging.

Backend Objects5.3.2
33.6 %

Storage URL5.3.3 33.7 %

example
For example, if the storage location is
https://github.com/mavoweb/mavo.io/blob/main/demos/todo/tasks.json, Madata infers the following from
it:

The service to use is GitHub,
The backend to use is “GitHub File” (as opposed to e.g. GitHub Gist),
The file is located at demos/todo/tasks.json in the mavoweb/mavo.io repository in the main branch.

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

113 /324

However, in some cases, especially with non-typical backend classes, no HTTP URL pat‐
tern is a good fit. A last resort is using a custom protocol. For example, to save data in the
browser’s local storage using mykey as the key, the Madata URL is local:mykey.

URLs are defined as URL patterns [99], a standardized syntax for concisely specifying a
set of URLs (for an example, see Section 5.5.1).

Each backend defines a set of zero or more test URLs and zero or more known URLs.
Test URLs are those that are used to test if a given URL should resolve to a given back‐
end. They need to be more precise, to avoid false positives. Known URLs are those that the
backend knows how to process, but should not necessarily cause it to be selected.

Madata stores a list of all backends topologically sorted by their inheritance. To resolve
a given storage URL to a backend, Madata iterates over the list of backends, trying their
test URLs in order, until one matches. If none match, it falls back to the default backend,
whose only capability is reading data from URLs.

These URL patterns perform double duty: their named groups are used to extract the
necessary information from the URL, so that a second parsing step (which may be
beyond the capabilities of many novice programmers) is not necessary.

There are various authentication protocols in use today to facilitate secure access to third-
party APIs. These authentication protocols are designed to be very secure, but they are
also complex and require a lot of boilerplate code to use.

As an illustrative example, consider OAuth 2.0 [14], one of the most popular authenti‐
cation protocols today. For a developer to use OAuth 2.0, they usually need to:

1. Register an application with the service they want to access, by describing what
they intend to do and obtain a secret API key.

2. Obtain a server with the capability to run server-side code. Register a domain
name, then provide a “calback URL” to the service they want to access.

3. From their client-side application, open a popup to a certain URL, so users can
authenticate with the third-party service.

4. The popup asks the user to log in to the third-party service and authorize the appli‐
cation to access their data. Then, the popup redirects to the callback URL, with a
temporary code in the URL.

Test URLs & Known URLs 33.9 %

Federated Authentication Provider (FedAP)5.3.4 34 %

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

114 /324

9. The server-side code residing at the callback URL sends a POST request to a special
URL at the third-party service (e.g.
https://github.com/login/oauth/access_token for GitHub), providing the tem‐
porary code as well as its secret API key (which shouldn’t be shared).

10. If everything went well, the response should (finally!) contain an access token.
Extract that access token.

11. Now communicate the access token back to the client-side application, so it can use
it to access the third-party service.

OAuth does support an easier “implicit grant” flow, but it is considered less secure and not
supported by all services. Thus, even if the rest of the API is CORS-enabled [100], the
authentication handshake often requires server-side code.

Madata
Backend

Federated
Authentication
Provider

Cloud Service

No access token OAuth handshake

Access TokenAccess Token

Access Token

User Info

Figure5.3 The only role of a Federated Authentication Provider (FedAP) is to authenticate the user with the third-
party service, obtain an access token, and communicate it back to the client-side application. It does not even need to store
them (although it can). From that point onwards, the Madata backend is expected to communicate directly with the third-
party service.

We introduce the concept of a Federated Authentication Provider (FedAP), to abstract all
this complexity away into a single string: The FedAP’s domain name.

FedAPs are servers that store API keys for specific OAuth applications in their sup‐
ported services, take care of the authentication handshake, and communicate the resulting
access token to Madata, all with no involvement from the application developer.
Developers can change their authentication provider (from the default auth.madata.dev)
by simply setting a static property on Backend objects. For example, to be able to take
advantage of existing logins to Mavo applications, one would need to use the Mavo
authentication provider:

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

115 /324

https://auth.madata.dev/

Or, they could specify multiple, for redundancy:

At the end of the authentication handshake, the FedAP presents the user with a confir‐
mation dialog (Figure 5.4). This step is essential for preventing malicious use. Without a
confirmation, a malicious application could trick users into visiting the page, and then
would get unfettered access to the user’s data on all services they have used the FedAP to
authenticate with.

Figure5.4 An example of an authentication confirmation screen.

If the user confirms, the FedAP then communicates the access token to Madata, and no
further server interaction with the FedAP is necessary. Since the FedAP is only involved
in the authentication handshake, this is generally a very low resource operation. As one

Backend.authProvider = "https://auth.mavo.io";

JS

Backend.authProvider = ["https://auth.mavo.io", "https://auth.madata.dev"];

JS

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.3 Main Concepts

116 /324

data point, the author has used a very early precursor of this approach on a website [101]
that served 50-100k users per month for five years (2013-2018) with no issues.

FedAPs can be used independently of Madata. When using a FedAP (without
Madata), the above process looks like this:

3. From their client-side application, open a popup to a certain URL, so users can
authenticate with the third-party service.

4. The popup asks the user to log in to the third-party service and authorize the appli‐
cation to access their data. Then, the popup redirects to the FedAP callback URL.

5. The FedAP takes care of the rest (steps 4-7 above), and communicates the
access token back to the originating application by using the Window Cross-
Messaging API window.postMessage() to send the token back to the originating
application…

When using a FedAP with Madata, the process is even simpler:

3. From their client-side application, the developer calls backend.login(), which
takes care of the rest.

4. The developer can await the result, which will be the user information (if the login
was successful) or just listen to the login event.

FedAPs follow introspection; visiting a FedAP’s root domain displays the list of services it
supports (Figure 5.5). The same information can be obtained programmatically via
/services.json which should be CORS-enabled.

To create a backend object for a specific storage location, all that is needed is to call
Backend.from() with the storage URL as the sole parameter, for example:

From that point onwards, common data operations are a single function call away. We
provide a few examples below.

Usage Examples5.4 34.8 %

// Import Madata and all supported backends and formats
import Backend from "https://madata.dev/src/index.js";

let backend = Backend.from("https://github.com/leaverou");

JS

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.4 Usage Examples

117 /324

Figure5.5 Visiting a FedAP’s root domain displays a list of supported services. Their metadata is also available
programmatically via `/services.json`.

Creating a backend will automatically log in a previously logged in user without showing
a login prompt (passively).

To show a login prompt when the user is not logged in, we can call backend.login().
Backend objects emit login and logout events so that the UI can be updated accordingly.

Assume we have the following HTML:

All the JavaScript we need to write to make it work is this:

Authentication5.4.1 34.9 %

<button id="login_button">Login</button>
<button id="logout_button" hidden>Logout</button>

<div id="username"></div>

HTML

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.4 Usage Examples

118 /324

Note that while this is may appear like a nontrivial amount of code, it is nearly all UI
(DOM) code: setting up events, updating the UI, and handling button clicks. The actual
data interaction with the data layer has been reduced to a single line of code for each
operation.

Now suppose we want to show a number of upvotes for the current page, and allow any
webpage visitor to see the same number, and any logged in user to add one or more votes.

It only takes a few additional lines of code:

globalThis.backend = Backend.from("https://github.com/leaverou/repo/data.json");

backend.addEventListener("login", evt => {
login_button.hidden = true;
username.textContent = backend.user.username;
avatar.src = backend.user.avatar;

});

backend.addEventListener("logout", evt => {
logout_button.hidden = true;
username.textContent = "";
avatar.src = "";

});

login_button.onclick = event => backend.login();
logout_button.onclick = event => backend.logout();

JS

Editing and Reading Data5.4.2 35.6 %

<div id="upvote_count">0</div>
<button id="upvote_button">👍🏼 </button>

HTML

let upvotes = await backend.load();

if (upvotes > 0) {
upvote_count.textContent = upvotes;

}

upvote_button.onclick = event => {
upvote_count.textContent = ++upvotes;
backend.store(upvotes);

};

JS

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.4 Usage Examples

119 /324

Now assuming we have a simple HTML file upload UI with an image to display the
uploaded file:

This is all the JavaScript needed to make it work:

These 6 lines of code take care of uploading the file to the right location, fetching a URL
that can be used to display it, and updating the image element with it.

For a paradigm like Madata to be successful, extensibility is key, not simply a nice-to-
have. Like Mavo, the prototype implementation of Madata supports arbitrary extension
points via hooks, but here we focus on the three core extensibility points: adding a new
backend, adding a new format, and adding a new authentication provider.

While adding support for a new backend requires writing JS, this does not mean that
superfluous complexity is acceptable. Madata follows a class hierarchy where common
patterns are implemented on base classes, so authors need only specify the backend-spe‐
cific details, such as the specific authentication URLs, storage location URLs, or API calls
needed. The less divergent the backend is to existing standards and patterns, the more
declarative the code will be.

Uploading Files5.4.3
36 %

<input type="file" id="uploader" accept="image/*">
<button id="upload_button">Upload</button>

HTML

upload_button.onclick = async event => {
let file = uploader.files[0];

if (file) {
let url = await backend.upload(file, {path: "images/"});
uploaded_image.src = url;

}
};

JS

Extensibility5.5 36.4 %

New Backends5.5.1

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.5 Extensibility

120 /324

As an illustrative example, here is the full code 2 to add support for GitLab, a popular
code hosting service,

The urls field specifies the URL patterns that should be recognized as GitLab URLs
when Backend.from() is called. While not shown here, there is also a knownUrls field that
specifies additional URL patterns that are recognized, but do not participate in the URL
matching algorithm.

import { OAuthBackend } from "madata";

export default class Gitlab extends OAuthBackend {
static capabilities = { auth: true, put: true, upload: true };
static defaultPermissions = { read: true };
static fileBased = true;
static apiDomain = "https://gitlab.com/api/v4/";
static oAuth = "https://gitlab.com/oauth/authorize";

static urls = [
"http{s}?://gitlab.com/:id(.+)/-/blob/:branch/:path(.+)",

];

static api = {
user: {

get: "user",
fields: {

username: "username",
name: ["name", "username"],
avatar: "avatar_url",
url: "web_url",

},
},
file: {

get: ref => `projects/${ ref.id }/repository/files/${ ref.path }?ref=${ ref.branch }`,
put: ref => `projects/${ ref.id }/repository/files/${ encodeURIComponent(ref.path) }`,

},
};

async put (data, {ref = this.ref} = {}) {
return super.put(data, {

branch: ref.branch,
content: this.stringify(data, {ref}),
commit_message: this.constructor.phrase("updated_file", ref.path),

}, "PUT");
}

}

JS

Slight simplifications for readability.
2

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.5 Extensibility

121 /324

http://localhost:8002/phd/chapters/madata/#fn-madata-2
http://localhost:8002/phd/chapters/madata/#fn-madata-2

Adding support for a new format entails specifying which file extensions and MIME
types [102] should automatically be recognized as the format, plus defining two methods:
parse(string, options) and serialize(string, options), which are usually wrappers
around a library that does the actual parsing and serialization.

For example, here is the complete code to add support for TOML [103], a generic con‐
figuration format language:

Note that because the format’s parse and stringify methods simply pass their argu‐
ments directly to the library, we did not even need to implement these two methods, we
simply assigned them.

By definition, creating a new authentication provider requires a server. However, all it
requires is copying the code (“forking”) of a template repository and deploying it to a
server. Then, the server administrator would need to register OAuth applications
with the services they want to support, and add their API keys to the server’s secret
configuration file (.secret.json), and their public metadata to a public configuration
file (services.json).

As a nice synergy with the rest of the ecosystem, the homepage showing the list of sup‐
ported services could also be a Mavo app for the server administrator to edit them, with
the data saved to services.json directly.

New Formats5.5.2
37.6 %

import { Format } from "madata";
import toml from "smol-toml";

export default class TOML extends Format {
static extensions = ["toml"];
static mimeTypes = ["application/toml"];
static parse = toml.parse;
static stringify = toml.stringify;

}

JS

New Authentication Providers5.5.3 37.8 %

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

122 /324

The Madata ecosystem has many parties: the developer, the user, other users, the FedAP,
the web site hosting the Madata-using app. An important question is, how much does
each entity have to trust other entities? And what power does a malicious version of each
party have?

As described above, a mailicous website that tricks users into visiting the page, will not
be able to access any user data, since the user will not confirm the authentication.
However, a malicious website that tricks users into authenticating (such as a phishing
attempt), can do a lot more damage. While this is a risk, it is not unique to Madata; it is a
security risk on par with the implicit (client-side) OAuth grant flow — Madata simplicy
extends it to the explicit (server-side) OAuth grant flow.

FedAPs need to be chosen carefully, as they require a high level of trust. A malicious
FedAP could do a lot of damage, as it can access all user data on all services the user has
used it to authenticate with. FedAPs do not need to store any user data (although nothing
prevents them from doing so); once the access token is communicated to the client appli‐
cation, the FedAP’s job is done. This means that even if a FedAP is compromised, the
damage is limited to the access tokens of users who authenticate while it is compromised.
Passive authentication (where the user has already previously logged in) is not affected,
since the FedAP is not involved in that process.

Some of the risks could be mitigated by allowing FedAPs to register multiple OAuth
applications for the same service, and distrubuting them to Madata-using applications
based on a one-way hash of their URLs, so that users who have previously authenticated
with one Madata application do not need to authorize more OAuth apps, but other
Madata applications using the same FedAP do not need to share the same API keys with
all other applications using the same service on the same FedAP.

OAuth does provide a mechanism of scopes 3 so that each OAuth application does not
get unfettered access to user data. Using this mechanism here is tricky, because the scopes
are shared across all Madata apps using the same service on the same FedAP, and thus
currently Madata requsts very broad scopes when authenticating. However, perhaps the
FedAP could start conservatively, and expand scopes as needed when users authenticate
with a new Madata app.

Discussion5.6
37.9 %

Security and Threat Model5.6.1

See tools.ietf.org/html/rfc6749#section-3.3 for the standard, and oauth.net/2/scope for a more human-readable explanation.
3

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

123 /324

http://localhost:8002/phd/chapters/madata/#fn-madata-3
https://tools.ietf.org/html/rfc6749#section-3.3
https://oauth.net/2/scope
http://localhost:8002/phd/chapters/madata/#fn-madata-3

It should be noted that Madata does not require use of FedAPs. For increased security,
app developers can use their own authentication server that handles communicating the
access token to their application, and still take advantage of Madata’s unified API for data
access. However, this requires more work, as the OAuth handshake needs to be imple‐
mented on the server side. Perhaps Madata could make this easier by allowing users to
register their own OAuth applications and securely store their API keys with the FedAP,
which would take care of authenticating only a whitelist of app URLs with these API
keys. This would still require trust in the FedAP, but it would prevent Madata applications
from being prone to phishing attacks.

Figure5.6 GitHub is an example of a cloud service that allows users to create personal access tokens with very elaborate,
fine-grained custom permissions.

Another avenue is user empowerment. Many third-party services provide GUI for users
to obtain access tokens directly with the service (see Figure 5.6 for an example). A
planned improvement is for Madata to provide an optional way for more technical, pri‐
vacy-conscious users to directly enter an access token, so that they can set their own

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

124 /324

scopes and access limits, and revoke access at any time. It could even make this easier by
storing the link to the relevant settings page for each service in the FedAP’s metadata.

Madata facilitates simplicity and ease of use, but that does not come for free. Some trade‐
offs were described in the previous section. Another potential tradeoff is accountability.

In the traditional OAuth model, application developers register their own OAuth
applications to procure API keys, and are thus accountable for their actions. With Madata
FedAPs, they do not need to register anything — they simply start using the service.
FedAPs do have access to the app’s requesting URL and thus the ability to block bad
actors, but this is after the fact, since there is no review step involved.

However, it is questionable whether the review step in OAuth is effective at preventing
bad actors, or whether it simply adds friction to the development experience for little
benefit.

Madata is purely about the data layer. It does not construct any UI, which is left up to the
application developer. While this makes it more flexible, it can also make it tedious to use,
as a lot of interactions with the data layer are repetitive.

Mavo HTML is certainly a solution to this problem, but it is not a perfect one. While
Mavo provides a very high abstraction level, the loss of control can be frustrating for pro‐
grammers. To bridge this gap, Madata implements a set of Web Components 4 that
encapsulate specific UI interactions such as authentication, or autosave with throttling.

For example, a <madata-auth> custom HTML element can be used to display user
information and authentication controls with just a single line of HTML:

Accountability5.6.2 38.4 %

Lowering the Floor with Web Components5.6.3 38.5 %

<madata-auth src="https://github.com/leaverou/somerepo"></madata-auth>

HTML

madata.dev/components
4

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

125 /324

http://localhost:8002/phd/chapters/madata/#fn-madata-4
https://madata.dev/components
http://localhost:8002/phd/chapters/madata/#fn-madata-4

When Madata begun, as a Mavo component, it was a lot more imperative. To support a
new backend, authors had to implement low-level get(), put(), login(), upload(),
getUser(), etc. methods. While it did provide abstractions that made it palatable to
implement these methods, it was still a lot more boilerplate. Over time, as more backends
were added, common patterns emerged, and their code was abstracted away into base
classes that only set static class fields as inputs.

It is an open question how far this process can go. Could we reach a point where
adding a new backend can be done entirely by specifying metadata, without requiring
any imperative code? And if so, would that bring it within reach of non-programmers?

The discerning reader will have noticed that the promise of storage URLs is not yet fully
realized. For Madata to support a given service, it needs to “know” about it in advance,
and for a storage backend to exist and have been imported for that particular service. For
true decentralization, there should be a standard protocol to enable services to declare all
the necessary information that Madata needs to know, so that the necessary backend can
be generated on the fly.

There is already such a mechanism: well-known URIs, defined in IETF RFC 8615
[104]. A well-known URI is a URI [RFC3986] whose path component begins with the
characters /.well-known/. While the registry of well-known URIs is maintained by
IANA 5, nothing prevents services from using well known URIs that are not registered,
and those in widespread use would likely later become standardized. One could imagine a
URL like /.well-known/madata or /.well-known/madata.json that would contain all the
necessary information for Madata to interface with the service.

Additionally, authentication providers could also provide the necessary code or meta‐
data for Madata to interface with a new service.

This is not without new risks. When allowed backends are imported by the
programmer, they are in control of what code runs in their application. If backends
can be generated on the fly, this control is lost. And if URLs are also user-supplied, an
adversarial user

More Declarative Syntax5.6.4
38.7 %

Dynamic, Decentralized Backends5.6.5 38.8 %

iana.org/assignments/well-known-uris/well-known-uris.xhtml
5

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

126 /324

http://localhost:8002/phd/chapters/madata/#fn-madata-5
https://www.iana.org/assignments/well-known-uris/well-known-uris.xhtml
http://localhost:8002/phd/chapters/madata/#fn-madata-5

could easily host malicious code on their own server, and then use a URL from
said server.

The main way to mitigate this risk is to turn code exchange into data exchange. This
could happen either at the point of interfacing with the backend, by only allowing entirely
declarative backends from third-party services (see previous section), or at the point of
data I/O, by running all untrusted third-party code in a sandboxed environment, where it
can only access its inputs, and nothing else. Then, the sandbox communicates with the
main application by exchanging plain data, which is generally safe.

Of these, declarativeness is a preferable approach; not only due to the benefits of
declarative languages in general, discussed in previous chapters, but also because it is less
likely to negatively affect ergonomics.

In this chapter, we presented Madata, a set of protocols and client-side APIs, designed to
facilitate data ownership by democratizing data access. By unifying the processes of
reading and writing data across diverse storage services and formats through a single API,
Madata addresses not only one of the biggest usability cliffs in modern web development,
but also suggests a model that could facilitate data portability more broadly.

Conclusion5.7 39.1 %

Chapter 5 Madata: Facilitating Data Ownership by Democratizing Data Access  5.6 Discussion

127 /324

 4,947 words (15 min read)

Figure6.1 The complete HTML for a fully-functional To-Do app made with Mavo, with a data update action for
deleting completed items. No JavaScript is needed.

CHAPTER 6

Extending a Reactive
Formula Language with
Data Update Actions

Mavo app

<body mv-app="todo" mv-storage="https://www.dropbox.com/…/todo.json">
<h1>My tasks</h1> <p>[count(done)] done, [count(task)] total

<li property="task" mv-multiple>
<input type="checkbox" property="done" />
Do stuff

<button mv-action="delete(task where done)">Clear Completed</button>

</body> Mavo HTML

128 /324

Many systems and languages exist for assisting novice programmers to manage informa‐
tion, and/or create CRUD applications for this purpose. They range from the well known
commercial spreadsheet systems to more complex application builders [54, 80] or simpli‐
fied declarative languages [11, 40].

These usually generate an editing interface for elementary data manipulations (editing
a data unit, inserting items, deleting items) and a mechanism for lightweight reactive data
computation. As an example, in spreadsheets the editing interface is the grid itself, and
the computation is the spreadsheet formula.

These tools typically offer only direct editing of specific data items by the end-user.
Affordances may also be provided for aggregating certain kinds of commonly needed
mass modifications. A few examples of these would be selecting multiple items for dele‐
tion or move, adding multiple rows or columns, or the spreadsheet fill handle. However,
the set of potential data mutations is infinite, and it is not practical to predefine controls
for every possible case. For more complex automation of data edits, users are typically
directed to scripting or SQL queries. Learning a scripting language is almost as hard
as learning a programming language, and SQL queries quickly become complicated
when nested schemas are involved, which are represented by multiple tables and
foreign keys [51].

Mavo [11] is an HTML language extension for defining CRUD Web applications by
annotating a static HTML mockup to separate UI from data. A property attribute indi‐
cates that an element is data, and an mv-multiple attribute makes it repeatable i.e. turns it
into a collection. Based on this markup, Mavo generates a suitable editing interface. Mavo
stores its data locally or on a cloud service.

Many applications benefit from presenting values computed from their data, so Mavo
implements a reactive expression language called Formula², similar to what can be found
in spreadsheets, for lightweight computation. Expressions can be placed anywhere in the
HTML and are denoted by square brackets ([]) or certain attributes(mv-if, mv-value
etc). An expression can reference properties, with its evaluation depending on the location
of the expression relative to the referenced properties in the data tree. Referencing a
multi-valued property on or inside a collection item resolves to its local value on that
item, whereas referencing that property name outside the collection resolves to all values.

Introduction6.1
39.9 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.1 Introduction

129 /324

All operators and most functions can be used with both single values and lists. This makes
many common expressions concise.

Our previous work [11] provided evidence that Mavo empowered users with no pro‐
gramming experience to author fully functional CRUD applications. But Mavo offered
only direct editing of individual data items, while many applications call for richer, pro‐
grammatic modification of large collections of data simultaneously. For example, while a
simple To-Do list could be easily implemented with a few lines of HTML+Mavo,
clearing all completed items was not possible.

Mavo did offer controls for deleting individual items, but no way to specify such
actions that programmatically delete certain items.

In this work, we extended Mavo with a new HTML attribute, mv-action, for specifying
programmatic data updates. Its value describes the data mutation as an expression, and it
is placed on the element that will trigger the action by clicking. The expression leverages
Formula2’s existing expression syntax as much as possible, but adds functions that modify
the data. Formula2’s filtering operator, as well as its data specification syntax (group() and
list()) were also originally defined to facilitate actions. A short example implementing
bulk deletion can be seen in Figure 6.1.

Given the small user bases of most research systems, there is little data on any kind of
user requests. However, when it comes to spreadsheets, there is a large volume of user
questions indicating a clear need for a way to programmatically manipulate data. It is
indicative that searching for “button to change value excel”, which is considerably more spe‐
cific, both in terms of task and in terms of system, yields at least 400 relevant questions on
stackoverflow.com alone! 1. Most askers did not mention their exact use case, but the
abstract task they were trying to accomplish, which was primarily being able to press a
button to change the content of one or more cells.

Our hypotheses are that (a) the set of primitives we have chosen is expressive enough
to meaningfully broaden the class of data management applications that can be created

Our Contribution6.1.1 40.3 %

We measured this by restricting our Google search to stackoverflow.com and inspecting all results in the 50 pages that were
accessible

1

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.1 Introduction

130 /324

http://stackoverflow.com/
http://localhost:8002/phd/chapters/actions/#fn-actions-1
http://stackoverflow.com/
http://localhost:8002/phd/chapters/actions/#fn-actions-1

without undue complexity, and (b) novice web authors can easily learn to specify pro‐
grammatic data mutations. To examine the first hypothesis, we list a number of case
studies of common interactions and how they would be expressed with our data update
syntax. To examine the second hypothesis, we conducted a user study with 20 novice web
developers writing a variety of data mutations, using first their own imagined syntax and
then ours (Section 7.2).

We found that the majority of users were easily able to learn and apply these data
mutation expressions with 90% of our participants getting two thirds of the questions
right on first try, with no iteration. We even found that in many cases, our syntax was very
close to their imagined syntax.

Although the presentation of information is an important part of Mavo, our work here
focuses on and extends the computational power of Formula². We believe our work sug‐
gests more broadly a way to increase the power of such functional reactive programming
environments, including spreadsheets, for novice users.

Although the presentation of information is an important part of Mavo, our work here
focuses on and extends the computational power of Formula², an expression language with
power similar to spreadsheet functions. And while we study Mavo, we believe our work
has broader implications for such functional reactive programming languages.

As in spreadsheets, all Formula² expresions are reactive, updating immediately if their
arguments change. But Mavo diverges from spreadsheets in two potentially useful ways.
First, instead of referring to arguments through a grid-based coordinate system, Formula²
uses the names defined in the data (through the property attribute in Mavo HTML).

Unlike the table model of spreadsheets, Mavo provides a hierarchical data model of
objects containing properties and other objects, as well as collections. This data model
permits storage and reference of more complex objects than spreadsheets. Nesting offers a
limited amount of the power that database joins do, to connect relationships between mul‐
tiple tables. The nested presentation structure of HTML makes it natural and easy for
authors to define these nested data models by the way they look on the web page.

One of the primary reasons we chose to extend Mavo with this functionality is
Formula²’s property reference mechanism (Section 4.4.1): Every property can be refer‐
enced from anywhere and the value depends on the location of the expression relative to

End-User Reactive Programming6.1.2 40.7 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.1 Introduction

131 /324

the property in the data tree. Referencing a multi-valued property on or inside a collec‐
tion item resolves to its local value on that item, whereas referencing that property name
outside the collection resolves to all values. All operators and most functions can be used
with both single values and lists. This makes many common expressions concise, a feature
that extends to our mutations as well.

Our work extends the Mavo language [11]. A full discussion of related work can be found
there. In summary, many platforms and systems have been developed over the past few
decades to help web authors build web applications, many of which are presented in
Chapter 2. Some of these tools target web developers with limited programming and
database knowledge [44, 52], allowing them to make programmatic changes to the data
using SQL queries.

Others were developed for novice web designers who are interested in rapid develop‐
ment of web applications [27, 55, 105], with spreadsheets or a variation of spreadsheets as
a back-end, but with limited or no mechanism to make data updates programmatically.
Two lines of prior work are especially relevant, one on creating systems for graphically
designing database schemas as well as building web page content, depending on SQL
queries to make automated data updates (Section 2.3), and the other on developing
WYSIWYG tools for creating web pages with spreadsheets as the back-end, with limited
data update capabilities.

Data updates are specified via an mv-action HTML attribute, which can be placed on
any element. Its value is an expression that describes the action that will be performed.
The action is triggered by clicking (or focusing and pressing spacebar, for keyboard
accessibility), as that appears to be the most common way to invoke an action on most
types of GUIs.

Related Work6.2 40.9 %

Mavo Data Update Language6.3 41 %

The mv-action HTML Attribute6.3.1

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.3 Mavo Data Update Language

132 /324

We extended Formula² with four data modification functions (brackets indicate optional
arguments):

set(reference, value)

delete(ref1, [, ref2 [, ref3, ...])

add(collection [, data] [, position])

move(from, to)

The first three are analogous to the SQL primitives UPDATE, INSERT, DELETE,
whereas the latter is a composite mutation (delete, then add). Per [106], we used simple
English words that have a largely unambiguous meaning. These functions are only avail‐
able in expressions specified with the mv-action attribute. Regular Mavo expressions
remain side-effect free.

We kept these functions minimal, to delegate selection and filtering logic to Mavo
expressions. This maximizes the amount of computation specified in a reactive fashion,
which is easier for novices to work with [107, 108].

The set() function only accepts two arguments: what to set, and the new value(s).
However, both arguments can be multi-valued, in which case they are applied pairwise,
in the same way as Mavo operators, i.e. if the lengths are different, the operation is
only applied to the corresponding items, and the extra items are just returned with no
modification.

The delete() function deletes all collection items passed to it via one or more
parameters.

The add() function adds one or more new items, optionally pre-filled with data (if the
data parameter is used) and optionally at a specific position in the collection (if the
position parameter is used). The first parameter can be a reference to a collection, or a
collection item. In the latter case, the target defaults to the collection containing the refer‐
enced item, at the position of that item. This for example makes it easy to replicate Mavo’s
own “Duplicate item” behavior by invoking add(name, name).

Data Mutation Functions6.3.2
41.1 %

Changing Values with set(ref, newValue) 41.2 %

Deleting Items with delete(ref1, ref2, ...)

Adding Items with add(ref [, data] [, position]) 41.3 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.3 Mavo Data Update Language

133 /324

This function moves items to a different position within the same collection or to a dif‐
ferent collection. Originally we did not plan to provide a move() function, since it can be
simulated with a delete() and then add(). However, delete() displays UI for undoing
the deletion which would be jarring in the case of moving items. Furthermore, even if
that were not a problem, a separate move() function provides semantic clarity in the
author’s code.

Previously, there was no way to infer which Mavo node had produced which data from
within a function. The data passed to functions was essentially a combination of plain
JavaScript objects, arrays, and primitives. This had the advantage that authors who were
comfortable with a little JavaScript could easily extend Mavo by writing their own func‐
tions in plain JS. However, with data actions, it is essential to be able to trace values back
to the Mavo node that produced them, so that the UI can be updated accordingly.

We added a non-enumerable Symbol 2 property to objects that correspond to Mavo
Node data. This way, these node references do not interfere with normal expressions, but
Mavo data mutations can still retrieve the nodes referenced and manipulate them. We
also needed to convert all expression data to objects instead of primitives so they could
have properties attached to them and used a special Null object for empty values, instead
of the JavaScript null value (which also could not have properties).

Furthermore, we had to modify the implementation of several Formula² functions so
that they do not inadvertently break these reverences by creating new data.

Figure6.2 A dice rolling application with a history of past dice rolls.

Moving Items with move(from [, to] [, position])

Implementing References to Mavo Nodes 41.4 %

Multiple Sequentially Executed Function Calls per Formula6.3.3 41.6 %

<div property="diceHistory" mv-multiple
 class="dice-[diceHistory]"></div>
<div property="dice" class="dice-[dice]">6</div>
<button mv-action="

add(diceHistory, dice),
set(dice, random(1,6))">Roll dice</button>

ecma-international.org/ecma-262/6.0/#sec-symbol-objects
2

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.3 Mavo Data Update Language

134 /324

http://localhost:8002/phd/chapters/actions/#fn-actions-2
http://ecma-international.org/ecma-262/6.0/#sec-symbol-objects
http://localhost:8002/phd/chapters/actions/#fn-actions-2

Update actions often consist of multiple elementary updates, executed sequentially. The
Dice Roller in Figure 6.2 demonstrates an example (add(), then set()). To facilitate this,
we extended Formula² to support multiple function calls in the same expression. These
can be separated by commas, semicolons, whitespace, or even nothing at all.

Formula² provides an if() function that works similarly to the IF() function in spread‐
sheets, except it can also be applied element-wise if one or more of the arguments are
arrays. In early pilots of the user study, we realized that subjects may try to use if() to
filter the target of a data update. For example, in the data update “Rename every person
older than 40 to Chris”, it would be natural to use an expression like if(age > 40,
set(name, ’Chris’)). However, given the way Formula² works, this would not filter
the target of the update (name)), but merely the result of the set() function, a behavior
which – while consistent with how functions work – is highly unlikely to meet author
expectations.

To enable such expressions to produce the expected result, we defined a new set of data
mutation functions: setif(), addif(), deleteif(), moveif(), whose first argument is a
condition, and otherwise work the same way as their aforementioned counterparts. Then,
we rewrite data update calls inside if() expressions to use these functions instead.

Since regular Formula² expressions have no side effects and only produce one output,
there was no way to specify more than one sequential function call (and no reason to do
so). However, with data mutations, there may sometimes be a need to perform more than
one update as part of the same action. Figure 6.2 demonstrates an example of this. To
enable this, we modified Formula² to allow multiple function calls, which can be sepa‐
rated by commas, semicolons, whitespace, or even nothing at all.

We noticed that Formula²’s expression parser already parsed adjacent function calls as
AST nodes of type “Compound” but serializes such tokens to JavaScript with no separa‐
tor, which would result in an error when the JavaScript code produced is executed.
Therefore, to enable multiple function calls we modified Formula²’s serialization to

Using if() with Data Updates6.3.4 41.9 %

Multiple Function Calls per Expression6.3.5 42 %

Implementation 42.1 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.3 Mavo Data Update Language

135 /324

serialize Compound tokens into comma-separated values, as commas are an existing
JavaScript operator that merely returns the last value.

Since the same Compound token was produced regardless of whether the function
calls were separated by commas, semicolons, whitespace, or even nothing at all, providing
this kind of flexibility essentially came for free. Another fortunate side effect of this modi‐
fication was that this also enabled function arguments that are separated by whitespace.

Part of our argument is that Data Update Actions have sufficient power to easily specify a
broad range of programmatic data manipulations in applications. To support that argu‐
ment, we outline a few common interactions below. None of these can be implemented
with the original Mavo alone. In each case, we show the source code, primarily HTML
and original Mavo syntax; and we highlight the code leveraging data actions.

We first demonstrate how a few lines of Mavo can be used to define a number of fre‐
quently used general-purpose UI widgets, then present a few specific applications such as
the ubiquitous shopping cart.

All Mavo data update controls except drag and drop can be expressed concisely as data
actions, which facilitates UI customization. The following examples assume the updates
are modifying a collection with property="item". Note that index (or $index) is a built-
in Mavo variable that resolves to the index of the closest collection item, starting from 0.

Action Data update Expression

Add new item button (outside collection) add(item)

Add new item after current add(item)

Duplicate current item add(item, item)

Example Use Cases6.4 42.2 %

Generalizing Existing Mavo Data Updates6.4.1 42.3 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.4 Example Use Cases

136 /324

Delete current item delete(item)

Move up move(item, index - 1)

Move down move(item, index + 1)

It is common to have lists of items that share some properties but not others. In object-
oriented programming, we would say objects that are subclasses of the same superclass.
For example, a blog might have two types of posts: text and picture. All posts have a
title and a date, but picture posts have an image property, and text posts have a text
property.

This pattern can already be implemented in Mavo, by having a type property that
determines the type of the item, and then using mv-if to show the right properties:

However, the user interaction is suboptimal: to add an image post we need to add a new
post, then change its type to “image”. With data actions, we can make non-default types
first-class citizens, by having different add buttons for them:

One natural class of use cases for data actions is in creating rich new UI widgets. These
widgets generally present underlying data from the traditional model in some novel

Heterogeneous Collections 42.4 %

<article property="post" mv-multiple>
<meta property="type" mv-options="text, image">
<h2 property="title"></h2>

<div property="text" mv-if="type = 'text'">

</article>

HTML

<article property="post" mv-multiple>
<meta property="type">
<h2 property="title"></h2>

<div property="text" mv-if="type = 'text'">

</article>
<button mv-action="add(post, type: 'image')">New 🖼️ </button>
<button mv-action="add(post, type: 'text')">New 📄 </button>

HTML

Common UI Widgets6.4.2 43.3 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.4 Example Use Cases

137 /324

fashion. But the widgets also tend to come with their own internal view model describing
the state of their presentation. Data actions can be used to control the state of the view
model, and thus to manage the widget’s data presentation.

It is common to offer an affordance to simultaneously check or uncheck all items in a list.

While spinners (a widget that can increment or decrement a num‐
ber) are native to HTML5, this is still useful when a customized
presentation is desired, such as the one here.

An accordion permits a user to show one of several distinct sections
of content, while the rest are hidden. The same markup, with dif‐
ferent CSS, could also be used to implement a tabbed view.

Select All

<button mv-action="set(selected, true)">Select All</button>
<button mv-action="set(selected, false)">Unselect All</button>
<div property="item" mv-multiple>

<input type="checkbox" property="selected" />
<!-- other content -->

</div>

HTML

Spinner Control 43.6 %

<button mv-action="set(number, number - 1)">-</button>
1
<button mv-action="set(number, number + 1)">+</button>

HTML

Accordion / Tabs 43.8 %

<details property="prop" mv-multiple open="[open]"
 mv-action="set(open.$all, false) set(open, true)"">

<summary property="title"></summary>
<meta property="open" />
<!-- content -->

</details>

HTML

Pagination 44.1 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.4 Example Use Cases

138 /324

The following markup implements a working pagination widget and the content it pagi‐
nates. It uses the Mavo mv-value attribute to generate a dynamic collection of page mark‐
ers, then mv-action to make them clickable. An expression on each item controls whether
it should be displayed based on the current page.

A slideshow is essentially pagination with one item per page, frequently used for photos
or other large objects.

According to a wide survey of HTML authors in 2023 ([109]), the top missing element
in HTML is data tables with filtering and sorting.

Mavo provides an mv-sort attribute whose value is the property
name(s) to sort by. Data actions can dynamically change that via a
helper property that holds the property name.

<meta property="current" content="1">
<meta property="per_page" content="10">
<meta property="pages" content="[ceil(count(item) / per_page)]">

<a mv-action="set(current, current - 1)" mv-if="current > 1">◂
<a mv-multiple mv-value="1 .. pages" mv-action="set(current, page)">1
<a mv-action="set(current, current + 1)" mv-if="current < pages">▸

<!-- Content to be paginated: -->
<div property="post" mv-multiple hidden="[page != current]">

<meta property="page" content="[ceil((index + 1) / per_page)]">
<!-- content of one item -->

</div>

HTML

Slideshow / Carousel 44.8 %

<meta property="current" content="0">
<div property="slide" mv-multiple hidden="[current != index]">

<!-- content -->
<button mv-action="set(current, next.index or 0)">▸</button>
<button mv-action="set(current, previous.index)">◂</button>

</div>

HTML

Sorting Table by Clicking on Column Header 45.1 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.4 Example Use Cases

139 /324

https://2023.stateofhtml.com/en-US/usage/#html_missing_elements
https://2023.stateofhtml.com/en-US/usage/#html_missing_elements

This does not address clicking twice for ascending sort, which can be done by introducing
a conditional:

To visually communicate the sorting criteria, we could either use an expression like
if(sortBy = '-name', '▲', if(sortBy = '+name', '▼', '')) in each header cell, or
use CSS.

An alternative solution would be to overwrite the collection with a sorted version of
itself each time the header is clicked:

This example positions each collection item over a 720 × 360
equirectangular map by storing the mouse position at the time
of clicking. Similar logic can be used for adding events to a
calendar view.

<meta property="sortBy" content="">
<table>

<tr>
<th mv-action="set(sortBy, 'name')">Name</th>
<th mv-action="set(sortBy, 'age')">Age</th>

</tr>
<tr property="person" mv-multiple mv-sort="[sortBy]">

<td property="name"></td>
<td property="age"></td>

</tr>
</table>

HTML

<th mv-action="set(sortBy, if(sortBy = '-name', '+name', '-name'))">Name</th>
<th mv-action="set(sortBy, if(sortBy = '-age', '+age', '-age')))">Age</th>

HTML

<th mv-action="set(person, sort(person, name)">Name</th>
<th mv-action="set(person, sort(person, age)">Age</th>

HTML

Adding Map Pins / Calendar Events 45.9 %

<meta property="hoverPos"
 content="group(lat: 90 - $mouse.y / 2, lon: $mouse.x / 2 - 180)">

<div property="place" mv-multiple
 style="top: [2 * (90 - lat)]px; left: [2 * (lon + 180)]px">

HTML

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.4 Example Use Cases

140 /324

Mavo supports direct manipulation to move an item from one collection to another by
dragging it. But data actions enable authors to specify more natural mechanisms for
common cases, such as the “Add to Cart” button of an e-shop.

This is a specific instance of copying an item from one collection to another, which
Mavo offers natively through drag and drop. But nobody wants to force users to drag an
item to a shopping cart! Instead, a dedicated button provides a much quicker interaction.

Another commonly needed functionality is copying data from one item to another,
for example copying shipping address to billing address, or this example of copying
invoice details.

 <meta property="lat" />
 <meta property="lon" />
 <!-- other properties -->
</div>

HTML (continued)

E-shop: Add to Cart Button 46.4 %

<div property="product" mv-multiple>
<!-- name, image etc properties -->
<button mv-action="add(cart, product)">Add to cart</button>

</div>
<div property="cart" mv-multiple>

<!-- subset of product properties -->
</div>

HTML

Invoice Manager: Two Ways to Copy Customer Details 46.6 %

<div property="invoice" mv-multiple>
Copy customer details from invoice #<input property="copy" />
<button mv-action="set(customer, customer.all where id = copy)">Go</button>

<button mv-action="add(invoice, customer: customer)">
New invoice for this customer</button>

<!-- invoice properties -->
</div>

HTML

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.5 Discussion & Future Work

141 /324

Over the years, we considered many alternatives for offering data update functionality in
Mavo in a sufficiently general way. Early on, we were focused on designing an HTML-
based syntax for specifying actions in a human-readable way.

An early syntax sketch included an <mv-action> element with the action type, property
to operate on, value to set it to, etc. as attributes, which could either be fixed values, or use
the bracket syntax to embed expressions.

While this syntax may have prevented some of the user errors we observed in our study,
the learnability of the Formula² syntax appears to be sufficient that the verbosity of such a
syntax does not appear to be justified. That said, it would be a good future direction to
explore, and compare how it performs compared to the Formula² syntax.

This consideration is not specific to Mavo — the tension of whether to add new func‐
tionality via the user interface or the formula language is universal and relevant to many
low-code and no-code tools. In Mavo, the UI is the HTML the author is writing,
whereas in a GUI builder it would be the visual controls.

We will apply the user study findings to iterate on our syntax and make it more natural.
Many participants wanted to use a to keyword, which can be easily added. Several partici‐
pants were confused about the group() function, what it does, and when it is needed, so
we will examine whether it is possible to design the language in such a way that group()
is not required, possibly by using a variable number of arguments in add() or by requiring
plain parentheses instead of group().

We may decide to special case certain patterns to match user expectations: predicates
will be allowed as the sole argument in delete() and will target the closest item.set(a =
b) could be rewritten as set(a, b). Repetition in where can be avoided by expanding

Discussion & Future Work6.5
46.9 %

Extending Mavo HTML vs Extending Formula²6.5.1

 <button mv-action="#foo">Click me</button>
 <mv-actions id="foo">
 <mv-action type="add" property="propertyName" value="[someProperty]">
 <mv-action type="edit" property="myProperty" value="[foobar]">
 <mv-action type="delete" property="someCollectionProperty" value="5">
 </mv-actions>

HTML

Improving the Learnability of Our Syntax6.5.2 47.4 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.5 Discussion & Future Work

142 /324

property where value to property where property = value. Underspecified assign‐
ments, such as set(age + 1) could target the first named token.

We also need to improve the syntax for tasks which filter one property and set another
(Q14 and Q16), since our user study indicated clear problems with the current syntax.

Perhaps exposing the setif() etc functions we have implemented would be sufficient
or otherwise modifying the syntax of set().

Our work has explored ways to extend Formula², a functional reactive programming lan‐
guage, to permit end-users to specify complex data updates. These ideas may generalize
beyond Mavo. Spreadsheets are used to create quite complex data management
applications, and we believe that needs for complex data updates are likely to arise in such
applications. If we can provide a suitable syntax for end-users, we can broaden both the
range and the fidelity of tools they can create in their spreadsheets.

Currently, our data actions are triggered by clicking or form submission. In the future we
are planning to add the ability to specify different triggers, such as double clicking, key‐
board shortcuts, dragging, or mousing over the element.

From a preliminary analysis of use cases, we found that unlike in applications such as
interactive visualizations [110], CRUD applications rarely require the same level of inter‐
action richness, and clicking appears to suffice for many data update use cases.

Furthermore, if actions are available, even if only triggered by clicking, authors can
write JavaScript for the event handling, and have it programmatically click an element.
For example, to trigger a data action by mouse over, one could do:

While suboptimal, it’s still a lot easier than specifying the data mutations entirely
in JavaScript.

That said, there is certainly value in expanding the set of triggers available to authors,
especially since over time Mavo is expanding beyond strictly CRUD applications (see
Chapter 8). This could be done via an HTML attribute (e.g. mv-action-trigger or

End-User Functional Reactive Programming6.5.3 47.6 %

More Triggers6.5.4 47.7 %

<button onmouseover="this.click()" mv-action="...">Hover me</button>

HTML

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.5 Discussion & Future Work

143 /324

mv-action-event) whose value would be an “event selector”, as defined by Satyanarayan
et al. [110]. Event selectors facilitate composing and sequencing events together, allowing
users to specify complex interactions very concisely.

Furthermore, since many of our target users are familiar with CSS selectors, they might
be able to transfer some of that knowledge.

Another (potentially complementary) approach would be to also use a function-based
syntax as the value of this attribute, and expose event-related information as declarative
variables.

The majority of events in JavaScript represent a meaningful change in state of some
natural variable: the key that is down, mouse x or y, the selected element, the hovered ele‐
ment. It is natural to expose these variables in expressions, and Formula² already does this
to a small degree, by exposing special properties (Chapter 4), such as $mouse.x, $mouse.y,
$hash, $now and others, which update automatically, even when no data has changed. We
could expand this vocabulary to expose more event information (such as which key is
pressed), which would also be useful for Formula² more broadly.

This leads naturally to thinking of triggering off changes to variables or changes to
expressions over those variables. It remains a fascinating open question to resolve which
metaphor is most intuitive for novice programmers. This approach would also make it
possible to use data changes as triggers. While powerful, this could easily result in cycles,
which may confuse novices.

“Computed properties” in Mavo are properties whose value is an expression. These can be
simple primitives, or entire data structures by using the mv-value attribute on objects
(groups) or collections.

Currently, data updates to computed properties (i.e. properties whose value is an expres‐
sion) are ignored, since these properties are not editable by Mavo’s editing interface either.
However, there are valid use cases where one may want to temporarily replace or “freeze”
the value of an expression, such as a stopwatch with a pause button.

More work is needed to determine the best way to address these cases. We could allow
data updates to work with computed properties, and just remove the expression (essen‐
tially freezing them in time), but it is unclear how to reverse this (clear()?).

Blurring the Line Between Computed and Regular Properties6.5.5 48.2 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.5 Discussion & Future Work

144 /324

http://localhost:8002/phd/chapters/formula2/#special

There could be a special syntax to declare that the value to set should not be a one-time
evaluation but a new reactive formula, essentially getting our HTML authors to declare
functions. This could be used to blur the distinction between computed properties and
regular properties; any property could be set to a reactive formula and become temporarily
computed, and any computed property can be set to a value and become a regular prop‐
erty. However, this is a higher level of abstraction, which may be confusing for novices.

This chapter extends Mavo HTML and Formula² by adding programmatic data updates
that are triggered by user interaction. Our user study (Section 7.2) will show that HTML
authors can quickly learn to use this syntax to specify a variety of data mutations, signifi‐
cantly expanding the set of possible applications they can build, with only a little increase
in language complexity.

Conclusion6.6 48.3 %

Chapter 6 Extending a Reactive Formula Language with Data Update Actions  6.5 Discussion & Future Work

145 /324

 12,633 words (37 min read)

This was the first set lab of lab studies [11] we conducted on very early prototypes of
Mavo HTML (nee Wysie), Formula² (nee WysieScript), and Madata (which did not yet
have a separate name or implementation). Data Update Actions were not yet supported.

The primary focus of this first set of studies was to evaluate the usability of Mavo
HTML, Formula² as it relates to Mavo, and to a much lesser extent Madata as it relates
to Mavo.

To better understand the results, it is essential to discuss the design of Mavo at the time
of the study. since its constituent languages and components have evolved significantly
since then (partly thanks to the findings from these studies!).

Initially, all Mavo attributes (that were not part of any existing standard) used the prefix
data- rather than mv-. For example, mv-multiple was then data-multiple. While
HTML handles any attribute name well, to prevent future HTML features from
breaking existing websites, the HTML5 specification [111] defines that attributes begin‐
ning with data- are reserved for custom data attributes, and any other unknown attribute
should be considered invalid.

CHAPTER 7

Evaluation
Evolution&

First Lab Study: Mavo Prototype7.1

Relevant Context7.1.1 48.6 %

Mavo HTML
data-* over mv-*

146 /324

This leaves third-party languages, libraries, or frameworks that define multiple attributes
with having to choose between using invalid HTML, using data- prefixes which makes it
unclear which attributes belong to what third-party technology, or use a verbose prefix
like data-mv-. The first version of Mavo HTML went with the second option, favoring
HTML validity over brevity or clarity. Later versions switched to supporting both the
former (mv-*) and the latter (data-mv-*), and eventually the latter was dropped for sim‐
plicity (and due to lack of use).

At the time there was no mv-app attribute (or even a data-app one) — data-storage
served double duty: It both enabled Mavo functionality on an HTML subtree and speci‐
fied the data location.

The original thinking was that since enabling Mavo functionality on a subtree without
also asking Mavo to do something does not produce any visible change, which would vio‐
late the design principle that incremental user effort should result in incremental value.
Since an explicit opt-in does not produce any visible change, it was creating a highly
likely error condition, where authors use data-storage but forget to enable Mavo func‐
tionality on the subtree.

However, this was also a textbook case of undersirable concept overloading [112]. First,
some awkward situations, such as when applications did not need to store data anywhere
(e.g. a mortgage calculator), yet still had to specify a data-storage attribute with no value
to enable Mavo functionality. Second, it seemed unclear why we privileged that particular
attribute, so we later added more attributes to the set of attributes that could enable
Mavo functionality, making it nontrivial to figure out which elements on a page were
Mavo applications.

Furthermore, there was no way to provide a unique identifier for an application, since
there was no attribute that did not also serve another purpose. Eventually, all of these
issues led to the introduction of the mv-app attribute.

At the time, conditional logic and computation in general was only possible with expres‐
sions. The mv-if and mv-value attributes were added to Mavo as a result of this study.

No mv-app Attribute

No Declarative Expression Evaluation (mv-if, mv-value, etc)

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

147 /324

This initial prototype of Formula² used iff() instead of if().

As a proof of concept, Madata at the time only supported local storage and Dropbox.

In our evaluation, we examined whether Mavo could be learned and applied by novice
web authors to build a variety of applications in a short amount of time. In order to
understand both the usability and flexibility of Mavo, we designed two user studies. For a
first Structured study, we authored static web page mockups of two representative
CRUD applications and then gave users a series of Mavo authoring tasks that gradually
evolved those mockups into complete applications. This study focused on learnability and
usability.

For a second Freestyle study, before telling users about Mavo (so that they would not
feel constrained by its capabilities), we asked them to create their own mockup of an
address book application. Then, during the study, we asked them to use Mavo to convert
their mockups into functional applications. This study focused on whether Mavo’s capa‐
bilities were sufficient to create applications as envisioned by users.

We carried out the two user studies using three applications. The applications were
designed with hierarchical data to test users’ ability to generate hierarchical data schemas
and perform computations on them.

To facilitate replication of our study, we have published all our study materials online 1.

We recruited 20 participants (mean age 35.9, SD 10.2; 35% male, 60% female, 5% other)
by publishing a call to participation on social media and local web design meetup groups.

Of these, 13 performed only the Structured study, 3 performed only the Freestyle
study, and 4 performed both.

Formula²
49 %

Madata

Study Design7.1.2

Preparation7.1.3 49.2 %

mavo.io/uist2016/study
1

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

148 /324

http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-1
http://mavo.io/uist2016/study
http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-1

HTML CSS JavaScript

Beginner 0 4 13

Intermediate 8 5 6

Advanced 9 6 1

Expert 3 5 0

Table 7.1 Participant familiarity with web development languages.

All of our participants marked their HTML skills as intermediate (rich text formatting,
basic form elements, tables) or above. However, most (19/20) described themselves
as intermediate or below in JavaScript (Table 7.1). When they were asked about
programming languages in general, 13/20 described themselves as beginners or worse in
any programming language, while 7/20 considered themselves intermediate or better.

JSON HTML Metadata SQL

Never heard of it 0 10 0

Heard of it 6 6 5

Can read it 2 1 3

Can edit it 8 3 8

Can write it from scratch 4 0 5

Table 7.2 User study participants’ familiarity with data specification languages.

In addition, when we asked participants about their experience with various data con‐
cepts, only 4/20 stated they could write JSON, 5/20 could write SQL, and none could
write any type of HTML metadata (RDFa, Microdata, Microformats).

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

149 /324

We began by asking participants a series of open-ended questions about their experience
with web development and web publishing. We asked them what kind of applications and
functionality they wished they could create but could not due to lack of time or ability.

Before either study, we gave each user a tutorial on Mavo, interspersed with practice
tasks on a simple inventory application. This took 45 minutes on average and covered the
property attribute (10 minutes), the data-multiple attribute (10 minutes), and expres‐
sions using the [] syntax, broken down into how to reference properties and perform
computations (5 minutes), aggregates such as count() (10 minutes), and iff() syntax and
logic (10 minutes).

For the Structured study, we created two applications:

Decisions app: A tool for making decisions by summing weighted pros and cons.
The application also shows a suggested decision based on the sums of pro and
con weights.
Foodie log: A restaurant visit tracker that includes dishes eaten on each visit with
individual ratings per dish. The application also computes average ratings for each
visit and each restaurant.

17 subjects were given static HTML and CSS mockups of one of these applications and
were asked to carry out a series of tasks by editing the HTML. These tasks tested their
ability to use different aspects of Mavo, as shown in Figure 7.1. Eight of these users were
given a mockup of a Decisions app and the other 9 were given a mockup of a Foodie log.

Each subject was shown a fully functional version of their respective application (but
not its HTML source) before being given the static HTML template. While a CSS style
file was provided, they did not have to look at it.

We provided tasks to the user one at a time, letting them complete one before revealing
the next. Tasks were administered in the same order, and we measured the time each sub‐
ject took to complete the task as well as screen recorded their typing.

Participants were asked to speak aloud their thoughts and confusions as they worked.
Researchers were silent except to alert subjects to spelling mistakes and to explain
HTML and CSS concepts—such as how to set a value on a <meter> tag — if subjects
were unaware of them. If subjects spent over 15 minutes on a task but were not close to

Pre-Study Interview & Tutorial7.1.4
49.5 %

The Structured Study7.1.5 49.6 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

150 /324

Task category Example task Example code Med. time Success

Make editable “Make the restaurant information
editable (name, picture, url, etc)”

<h1 property="name">

Toscano</h1>
3:00 100%

Allow multiple “Make it possible to add
more pros and cons.”

<article property="pro"

data‑multiple> 1:15 100%

Simple reference “Make the header background dynamic
(same image as the restaurant picture)”

<header style="

background: url([pic])">
0:43 88%

Simple aggregate “Make the visit rating dynamic
(average of dish ratings)”

[average(dishRating)] 0:55 97.5%

Multi-block aggregate “Make the restaurant rating
dynamic (average of visit ratings)”

<meter value="

[average(visitRating)]">
2:00 77.8%

Filtered aggregate “Show a count of good restaurants” [count(rating > 3)] good

restaurants
6:10 70.9%

Conditional “Show "Yes" if the score is positive,
"No" if it's negative, "Maybe" if it’s 0.”

[if(score>0, Yes,

if(score < 0, No, Maybe))]
5:28 75%

Figure 7.1 User study tasks are shown in the mockups that were given to participants, and results are broken down by task
category. The green arrows point to element backgrounds, which participants made dynamic via inline styles or class names.
Page elements involved in specific tasks are outlined with color codes shown in the table. “Make editable” tasks are not shown
to prevent clutter.

succeeding, the researchers stepped in to offer hints or explain the answer, and marked the
task as failed.

In the case of the Decisions app, users had 10 tasks to complete, while for the Foodie log,
users had 12 tasks. The tasks increased in difficulty in order to challenge the users. We
grouped the tasks into 7 categories, where each category tests a particular aspect of Mavo.

Foodie: 1, Decisions: 1

Foodie: 3, Decisions: 2

Foodie: 3, Decisions: 3

Foodie: 3, Decisions: 2

Foodie: 1, Decisions: 0

Foodie: 1, Decisions: 1

Foodie: 0, Decisions: 1

Study Tasks 50.3 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

151 /324

Example tasks, code solutions, and the number of tasks in each category per application is
in Figure 7.1. As footnoted earlier, all this task data is available online.

A description of each task type and what it entails follows:

Make editable Adding property attributes to different HTML tags to make
them editable.
Allow multiple Turn an element into a collection, by adding property and
data-multiple.
Simple reference Display the value of a property somewhere else, via a
[propertyName] expression.
Simple aggregate Show the result of a simple aggregate calculation, such as the
count or sum of something.
Multi-block aggregate Aggregate calculation on a dynamic property, such as an
average of counts.
Filtered aggregate Show how many items satisfy a given condition.
Conditional Show different text depending on a condition.

Figure 7.2 Participant responses to the question “How long do you think it would take you to build this application?”
before learning about Mavo.

Results 50.4 %

N
um

be
r o

f p
ar

tic
ip

an
ts

“Hours” “Days” “Weeks” “Months”

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

152 /324

In the Structured studies, before providing the tasks, we showed users the finished
application they were tasked to create and asked them how long they thought it would
take them. Of the 17 users, 5 estimated it would take them several hours, 6 estimated
days, 3 estimated weeks, and 3 estimated months. Some users said that they would need
to learn new skills or that they had no idea where to start.

After going through the tutorial, 6 users went on to complete all the tasks for their
application with no failures, 1 user had no failures but had to leave before the last task,
and 10 users failed at one or more tasks. The 6 users who completed all tasks successfully
took on average 17.3 minutes (Decisions, 10 tasks) and 22.5 minutes (Foodie, 12 tasks) to
build the entire application.

Of the 10 people who failed one or more times, 5 failed on 1 task, 2 failed on 2 tasks,
and 3 failed on 3 tasks. All failures were concentrated on expression tasks, usually the
most difficult ones. The success rate for basic CRUD functionality was 100%.

Figure 7.1 shows the median time taken and success rate for each category of task for
all 17 users. As can be seen, some task categories were easier for participants to carry out
than others. For instance, all participants quickly learned where to place the property and
data-multiple attributes, taking a median of 3 minutes to make several elements editable
via property and a little over a minute to turn single elements into collections.

Almost all participants were also able to display simple aggregates, such as showing a
count of restaurant visits or a decision score (sum of pro weights - sum of con weights).
However, some participants struggled with more complicated expressions, such as condi‐
tionals or multi-block aggregates. We explore some of the more common issues next.

We asked these 17 participants who built either the Decisions or Foodie app to rate the
difficulty of converting the static page to the fully realized application. They were asked to
rate this twice: once after seeing a demo of the final application but before learning about
Mavo, and once after going through all the tasks with Mavo. On a 5-point Likert scale,
the reported difficulty rating after building the app with Mavo dropped 2.06 points on
average from its pre-Mavo rating.

We observed several recurring patterns in the errors made by participants.

Common Mistakes 50.8 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

153 /324

The most prevalent error was putting data-multiple on the wrong element — usually the
parent container — with 40% of participants stumbling on it at some point. However, as
soon as users saw that they were getting copies of the wrong element, they immediately
figured out the issue. As the user’s intent was always clear, a WYSIWYG editor would
solve this in the future. Another similarly common and quick-to-fix mistake was forget‐
ting data-multiple (25%). None of these mistakes led to task failures.

We noticed that users had a hard time grasping or realizing they could do concatenation.
Both the Decisions and Foodie applications included 3 simple reference tasks. We
noticed that the failure rate was significantly higher (20-25% vs 0%) when the variable
part was not separated by whitespace from the static part of the text, as shown in Table
7.3. Perhaps the whitespace allowed users to see the variable part as a separate entity, and
avoid building a mental model that involves concatenation.

HTML fragment Success

</meter> [rating] 100%

title="Overall rating: [rating]" 100%

</meter> [weight] 100%

style="background: url([pic])" 77.8%

class="weight-[weight]" 75%

class="answer-[answer]" 75%

Table 7.3 Success rate of simple references.

Another common mistake was using sum() instead of count() (20% of participants). This
may be because they are thinking of counting in terms of “summing how many items
there are”, Another theory might suggest that they are more familiar with sum(), due it

Misplaced data-multiple Attributes

Concatenation

Using sum() Instead of count()

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

154 /324

being far more common than count() in spreadsheets. However, this is unlikely as there
was no correlation between spreadsheet familiarity and occurrence of this mistake.

We noticed that some participants frequently copied and pasted expressions when they
needed the same calculation in different places. A DRY (Don’t Repeat Yourself) strategy
familiar to programmers would be to create an intermediate variable by surrounding the
expression in one place with a tag (such as or <meta>) that also has a property, so
that it can be referenced elsewhere. These intermediate properties would reduce clutter
and consequently reduce future mistakes down the road; they would also make it easier to
modify computations globally. This idea might however be counterintuitive in Mavo as it
calls for creating a tag in the HTML that is never intended to be part of the presentation,
conflicting with the idea that one authors the application by authoring what they want
to see.

The Structured tasks with the lowest success rate (70.9%) were those that required
counting with a filter (count(rating > 3)). 25% of participants tried solving these with
conditionals, usually of the form iff(rating > 3, count(rating)), which just printed
out the number of ratings, since the condition is true if there is at least one rating larger
than 3. Most who succeeded remembered or (more often) guessed that they could put a
conditional inside count and seemed almost surprised when it worked. Another way of
completing this task would be to declare intermediate hidden variables computing e.g.
rating > 3 inside each restaurant or decision and then sum or count them outside that
scope. Only 10% of participants tried this method, again suggesting that intermediate
variables are a foreign concept to this population.

Most participants found iff() to be one of the hardest concepts to grasp. 40% of sub‐
jects tried iff() when it was not needed, for instance in simple reference tasks. 25% of
users were unable to successfully complete the conditional task, which required two
nested iff()s or three adjacent iff() statements, each controlling the appearance of one
of the designated words (“Yes”, “Maybe”, or “No”). The latter strategy was only attempted
by 37.5% of participants.

In post-study discussions, some users mentioned how conditionals reminded them of
what they found hard about programming:

Abstraction and Intermediate Variables

Conditionals

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

155 /324

Another user reflected on how having multiple ways of doing something made it more
difficult:

Our second Freestyle user study involved a third Own Address Book application. During
recruitment, subjects were asked to create their own static mock-up of an address book on
their own time prior to meeting us, without being told why. The 7 subjects who complied
were assigned to the Freestyle study (3 also did the Structured study first). During
our meeting (and after the tutorial), they were asked to add Mavo markup to their own
mockup to turn it into a working application.

We added this second study to address several questions. First, we wanted to be sure
that our own HTML was not “optimized” for Mavo. Because users were not aware of
Mavo at the time they created their application, their decisions were not influenced by
perceived strengths and limitations of the Mavo approach. We can therefore posit that
these mockups reflected their preferred concept of a contact manager application. Thus,
this study served to test whether Mavo is suitable for animating applications that users
actually wanted to create. At the same time, it tested whether users could effectively use
Mavo to animate “normal” HTML that was written without Mavo in mind.

Before this Freestyle study, we provided no specification of how the application should
work or look, except to say that users only needed to use HTML and CSS; that if there
were lists, they only needed to provide one example in the list; and that the mockup
needed to contain at least a name, a picture, and a phone number. Then, during the study
session, we asked them to use Mavo to make their mockup fully functional in any way
they chose. If the application they envisioned was very simple, after they successfully

“That’s some math and logic which are not my strong points. Just seeing
those if statements…I did a little bit of Java and I remember those always
screwed me over in that class. No surprise that that also tripped me up here.”
❝

“It’s hard because there are often multiple ways of doing something.
And knowing which one would be the most efficient and best way
to do it without making a mistake in the process was hard for me."
❝

Freestyle Study7.1.6 51.4 %

Study Tasks 51.6 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

156 /324

implemented their application, we encouraged them to consider more complex features,
as described in the a section below.

Since what the user worked on depended on their own envisioned implementation,
we did not have explicitly defined tasks throughout. However, we did encourage users
to try more advanced Mavo capabilities by suggesting the following tasks if they ran out
of ideas:

1. Allow phone numbers (or emails) to have a label, such as “Home” or “Work”
[Make editable]

2. Allow multiple phone numbers (and/or emails, postal addresses) [Allow multiple]
3. Provide a picture alt text that depends on the person’s name (for example, “John

Doe’s picture”) [Simple reference]
4. Show a total count of people (and/or phone numbers, emails) [Simple aggregate]
5. Show “person” vs “people” in the heading, depending on how many contacts there

are. [Conditional]

Of our participants, 7 brought in their own static mockup of an Address Book app and
had time for the Freestyle study. We found a variety of implementations of the repeat‐
able contact information portion. One person used a <table>, with each row representing
a different contact. Three people used , with each contact as a separate list item, and
the information about each contact represented inline or as separate <div> elements. Two
people chose to only use nested <div>s, with each contact having their own <div>.
Finally, one person chose to create a series of 26 <div>s, each one a letter of the alphabet,
with the intended ability to add contacts within each letter.

When we asked users to use Mavo to improve their mockup in any way, all 7 users
chose initially to use the Mavo syntax to make the fields of the app editable and to
support

multiple contacts, and had no trouble doing so. 4 out of 7 chose, of their own accord, to
support multiple phone numbers, emails, or addresses per contact. In all but one case,
Mavo was able to accommodate what users envisioned, as well as our extra tasks. In one
case (top left in Figure 7.3), the participant wanted grouping and sorting functionality,
which Mavo does not support. She was still able to convert her HTML to a web applica‐
tion, but the user had to manually place each contact in the correct one of 26 distinct
“first letter” collections. A sample of Own Address Book applications that users created
are shown in Figure 7.3.

Results of Open-Ended Tasks 51.7 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

157 /324

Figure 7.3 A sample of Own Address Book applications created by users.

Five more participants brought Contact Manager mockups, but did not have time to ani‐
mate them due to participating in the Structured study first. However, all five mockups
were suitable for Mavo and followed the same patterns already observed in the
Freestyle study.

To further investigate its appeal, we encouraged participants to try out Mavo on their
own time after the user study. Three of them went on to create Mavo apps for their own
needs: (a) a collectible card game, (b) a bug tracker, and perhaps the most interesting of
all, (c) a horse feed management application (Figure 7.4). The authors of the first two
applications were programming novices, the latter intermediate.

Aftermath7.1.7 52 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

158 /324

Figure 7.4 Mavo apps independently created by participants. Clockwise: Collectible Card Game, Horse feed management,
bug tracker.

We conclude this section with some general observations applicable to both studies.

Approximately half (9/20) of our participants did not use spreadsheets frequently (“rarely”
or “hardly ever”), while the rest used them frequently or daily. And while all users had

General Observations7.1.8 52.1 %

Spreadsheet Familiarity and Mavo

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

159 /324

used spreadsheets and spreadsheet formulas before, most (12/20) had never used the
VLOOKUP() function necessary to do joins in spreadsheets.

While it is a plausible hypothesis that familiarity with spreadsheets would make Mavo
or Formula² easier to learn, we did not observe any difference in outcomes between those
familiar with spreadsheets and those not.

Some participants used the Inline debugging tools provided to them while others ignored
it, instead choosing to look at the visual presentation of the HTML to see where they
went wrong. One user even commented out loud that they were not going to look at the
debug table at all, then proceeded to fail on a task where a quick glance would have likely
prevented this.

A possible explanation is that novices are not used to looking in a separate place for
debugging information. The debug tables were visually and spatially disconnected from
the rest of their interface, especially on (visually) larger objects, which to some extent vio‐
lates the direct manipulation principles Mavo was based on.

When they were trying to solve an issue, they were looking at the part of the interface
that was supposed to display the result, not elsewhere. Another possible explanation is
that the information density of the table is intimidating to novices.

The users who did look at the debug tables found them useful for spotting spelling
mistakes, missing closing braces or quotes, use of wrong property names, and for under‐
standing whether properties were lists, strings, or numbers. Nobody experimented with
editing expressions in the debug table, and few participants (15%) used the in-browser
development tools such as the console and element inspector.

The overall reactions to Mavo ranged from positive to enthusiastic. One user who was a
programming beginner but used CMSs on a daily basis, said

Debugging Behavior

Overall Reactions 52.3 %

“Being able to do that…right in the HTML and not have to fool with…a whole
other JavaScript file…That is fantastic. I can’t say how awesome that is. I’m like, I
want this thing now. Can I have a copy please? Please send me an email once it’s out.”
❝

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

160 /324

Along similar lines, another non-programmer said “When is this going to be available? This
is terrific. This is exactly the stuff I have a hard time with”.

Many participants liked the process of editing the HTML as opposed to editing in a
separate file and/or in a separate language:

Others liked how the Mavo syntax was reminiscent of HTML:

Other users praised the ability to edit the data from within the browser as opposed to a
separate file or data system. One person said,

This unprompted recognition of direct manipulation supports our argument that this
approach is natural.

Though several users struggled with some of the more complicated tasks around
expressions, all participants easily got the hang of defining a hierarchical data schema
within HTML using Mavo. Several users felt that the Mavo attributes of property and
data-multiple were powerful even without expressions, and mentioned wanting to use
these attributes to replicate functionalities of CMSs that they used.

When asked what applications they could see Mavo being useful for, users mentioned
using Mavo to build a color palette app, a movies-watched log, a basic blog, and an app

“It seems much more straightforward, everything is right there.
You’re not referring to some other file somewhere else and have
to figure out what connects with what. It’s…almost too easy”.
❝

“It didn’t seem like a lot of new things had to be learned because
naming properties was just the same as giving classes and ids.”*❝
“It’s very simple. It’s as logical as HTML. You are eliminating one huge
step in coding, the need to call the answer at some point, which is really
cool… Everything is where it needs to be, not in a different place”*.
❝

“I’m convinced it’s magic to basically write templating logic and have
it show up and be editable. I think there’s a lot less cognitive overhead
to direct manipulation on the page, especially for a non-technical user”.
❝

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

161 /324

for tipping. Two users mentioned using Mavo for putting out surveys and contact forms.
Several mentioned using Mavo to build an online portfolio, with lists of projects.

Many participants were enthused about Formula² expressions, even those who had failed
at a few tasks. One participant said about them:

Another user, after learning about filtered aggregates (e.g. count(age > 5)) said

“It’s so expressive, it tells you exactly what it’s doing!”.

Users struggled with conditionals (if()), and their struggle multiplied when they were
nested. Part of this was , partly due to syntax — balancing parentheses and commas is
hard for novices [21, 113].

There are two ways to address this, not necessarily mutually exclusive: (a) in Formula²,
by reducing the need to balance parentheses (b) in Mavo HTML, by implementing a
declarative, HTML-based syntax for conditional logic.

For (a), Formula² could adopt a ternary operator such as if test then value1 else
value2 or value if test else value2 which is arguably more readable than the func‐
tional syntax for everyone.

For (b), Mavo HTML did adopt a declarative syntax for conditionals, by adding an mv-
if attribute whose value is always interpreted as an expression. in addition to the func‐
tional syntax.

count() is the only aggregate function that is meaningful for any data type. All others
(sum(), average(), median(), min(), max()) are only meaningful for numbers, booleans
(treated as 0 or 1), or strings containing numbers. Using them with lists of objects does
not produce an error, since non-numbers are simply ignored, but it also does not produce
a meaningful result.

Reaction to Formula²

“It’s simpler than I expected it to be. My anxiety expects it to be hard, then I
just say ‘write what you think’ and it turns out to be right. It’s very intuitive.”❝

Discussion & Future Work7.1.9 52.7 %

Declarative Conditionals

Generalizing Numerical Aggregates 52.8 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

162 /324

In tasks where participants had to sum properties of objects in a list (e.g. summing the
weights of pros and cons in the Decisions app), some tried using sum() on the list of
items, rather than the list of numbers (e.g. sum(pro) instead of sum(pro.weight)). Others
used sum() instead of count() to count the number of items in a list. In both cases, all
values passed were ignored and the result was 0.

It is an open question how numerical aggregates could be generalized in a way that
produces a more meaningful result when used with objects. One way would be to look in
the object’s properties and operate on all of those that are numbers. This would enable our
participant attempts to write things like sum(pro) to work as expected. While a useful
behavior in its own right, when author intent is to actually sum multiple object properties,
when it is the result of a slip, it could be quite fragile: you add a property to your schema
and suddenly your sum changes!

Another option is to treat objects and other non-numbers as 1 in order to have sum
generalize count. This would eliminate the second type of mistake, but it could be sur‐
prising as a general behavior, whereas descending to object numerical properties seems
more inline with Formula² aggregation semantics.

While participants were enthusiastic about the potential of building apps with Mavo,
there were also a few requested use cases that Mavo cannot presently accommodate.
Sorting, searching and filtering were recurring themes. Simple filtering and searching is
already possible via expressions and CSS, but not in a straightforward way. We plan to
explore more direct ways to declaratively express these operations. Since Mavo makes col‐
lections and properties explicit, it doesn’t take much more syntax to enable sorting and fil‐
tering of a collection on certain properties; however, the more complex question is to
develop a sufficiently simple language that can empower users to fully customize any gen‐
erated sorting and filtering interfaces beyond simple skinning.

One user wanted to filter a list based on web service data (current temperature). Mavo
can already incorporate data from any JSON data source, so this will become possible
once we support combining data from multiple Mavo instances on the same page.

After learning about conditional counting (e.g. count(score > 0), one participant
inquired about more complex queries, such as counting a different property than the one
filtered. The syntax we are considering for this is optional extra filtering arguments on all

Filtering and Sorting 53 %

Chapter 7 Evaluation & Evolution  7.1 First Lab Study: Mavo Prototype

163 /324

aggregate functions. This would enable syntax like count(gender == female, age > 40,
height > 160).

Following the introduction of data update actions, together with several Formula²
improvements, we conducted a second lab study focused on the usability of these
additions.

While data update actions were the focus of this study, it also serves as another
evaluation for Formula² and Mavo HTML, especially around Formula²’s scoping
and referencing, and its data specification and filtering mechanisms, which were new
additions.

To design a data update language that feels natural to novice programmers, we took a
two-pronged approach. First, we attempted an unconstrained elicitiation [114] of a
syntax that users find natural. Second, we used our prototype language in a constrained
elicitation, as we expected different insights from unconstrained responses compared to a
prototype.

Several studies [67, 69] have investigated and tried to understand what is natural for
novices, by examining the ways that non-programmers express solutions to common pro‐
gramming tasks. We decided to follow a similar, albeit slightly modified approach.

First, we authored static web page of a simple Mavo application, and we asked our par‐
ticipants to create their own syntax (what feels natural to them) to answer a series of
Mavo data mutation tasks. This study focused on understanding the mental models that
novices build about the notional machine. Second, we went over Mavo’s data actions doc‐
umentation with the participants, then asked them to write the syntax for the same series
of tasks we have asked them in the first part of the study, except now they know the
syntax of Mavo’s data actions. Third, we authored static web page mockups of two repre‐
sentative CRUD applications and then gave users a couple of Mavo authoring tasks that
gradually evolved those mockups into complete applications. Finally, freestyle study,
before telling users about Mavo’s data actions (so that they would not feel constrained by
the capabilities of our new data mutation syntax), we asked them to create their own

Second Lab Study - Formula² & Data Update Actions7.2 53.2 %

Goals7.2.1

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

164 /324

mockup of a shopping list application. In the last three sections, the study focused on the
usability and learnability of the data actions syntax.

Is our syntax intuitive and can it be learned in a short amount of time?

1. What syntax feels most natural to novice web authors for expressing a variety of
data mutations on nested data structures?

2. Is our syntax intuitive and can it be learned in a short amount of time?

HTML CSS JavaScript JSON

Not at all 0 0 6 4

Beginner 1 1 5 3

Intermediate 5 3 9 8

Advanced 12 11 0 5

Expert 2 5 0

Table 7.4 Participants’ familiarity with web technologies.

We recruited 20 participants (age μ=36.2, σ=9.25; 60% female, 40% male) by publishing a
call to participation on social media and local web design meetup groups. Their (self-
reported) skill levels in HTML and CSS ranged from beginner to expert, but interme‐
diate or below in JavaScript. 11/20 described themselves as beginners or worse in any
programming language, while 9/20 were intermediate.

Regarding data concepts, 5/20 stated they could write JSON, 4/20 could write SQL,
and none could write HTML metadata (RDFa, Microdata, Microformats). We asked our
participants to read through the Mavo Primer 2 and optionally to create a shopping list
application with Mavo before coming in for the study.

Preparation7.2.2 53.5 %

mavo.io/docs/primer
2

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

165 /324

http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-2
http://mavo.io/docs/primer
http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-2

Sessions were conducted one-on-one, in person and were limited to 90 minutes.
Participants were shown a Mavo application with two collections (men and women) each
containing a name, an age and a collection of hobbies (Figure 7.5). We decided on this
schema because it is nested, and the properties have an obvious natural meaning.

Figure 7.5 The people application, used for a variety of tasks

We used the Mavo Inspector (Figure 3.6) to demonstrate the application in general and
in particular the difference between referring to property values within the scope of a col‐
lection item versus outside the collection (See Section 4.4.1)

First, participants were asked to write expressions that compute counts for five ques‐
tions of increasing difficulty, starting from the simplest (“Count all men”) down to filtered
counts (e.g. “count women older than 30”, “count women who have ‘Coding’ as a hobby”,
etc), which participants found problematic in the first Mavo study. Participants were dis‐
couraged from iterating on their expressions, and were told we wanted to capture their
initial thinking.

The purpose of this part of the study was three-fold: (a) to assess their understanding of
existing Mavo capabilities, (b) to verify whether filtered counts were indeed harder, and
(c) to prime them into thinking in terms of declarative functional expressions for the
study that was yet to follow.

Not all five questions could be answered entirely with information from the Primer. For
example, the primer did not include the dot notation for narrowing down references (e.g.

Study Design7.2.3
53.7 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

166 /324

Question Type 

1 Delete all men delete

2 Add new man (with no info filled in) add

3 Delete all people delete

4 Add a new man and a new woman add

5 Delete current man delete

6 Make current man 1 year older set

7 Make everyone 1 year older set

8 Set everyone’s name to their age set

9 Delete women older than 30 years old delete 

10 Move the current woman to the collection of men move

11 Add a woman with the name “Mary” and age of 30 add

12 Add a woman with the name “Mary” and age
of 30 to the beginning of the women collection

add

13 Delete “Dining” as a hobby from everyone delete 

14 Rename every man with age > 40 to “Chris” set 

15 Move the current woman to the beginning move

16 Change the age of the woman named “Mary” to 50 set 

17 Move all men to the collection of women move

Table 7.5 All 17 data manipulation questions. The third column indicates whether filtering was needed to answer
the question.

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

167 /324

woman.age to get ages of women instead of age which would return ages from both men
and women).

The second part was a natural programming elicitation study [114]. We briefly
explained the problem that Mavo data updates are solving, as well as our idea for
addressing it on a high level. More specifically, we mentioned the mv-action attribute, as
well as the set(), delete(), add(), and move() functions, but presented this as ideas
whose syntax we are not sure about and had not developed yet. We then asked partici‐
pants to answer 17 data update questions of increasing complexity (Table 7.5) by writing
the syntax that felt more natural to them. They were also encouraged to even use different
function names, if that felt more natural to them.

After this stage, we revealed our language prototype so that they could experiment with
it during the study. After a brief tutorial (5-10 minutes), participants had to answer the
same questions, in the same order, using our syntax. After this section, participants were
asked to choose 4 questions, one from each action type (set, add, move, delete) and try
them out as a training task for the next part. Researchers would alert them to any mis‐
takes and help correct them.

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

168 /324

The final part of the study consisted of two sets of hands-on tasks where participants
would try authoring data updates to complete the functionality of two different
applications using our syntax prototype. For the first set, participants were randomly
assigned one of two applications: a Dice Roller application with a history of past dice
rolls, and a language learning Word Game where users click on words in the right order
to match a hidden sentence, both having three tasks. The second set was the same for all
users and extended a shopping list application, either one they made, or our template. For
all hands-on tasks (Figure 7.6), participants were given the HTML, CSS and (original)
Mavo markup, and only had to add mv-action attributes to complete their functionality.

Figure 7.6 The hands on tasks with their solutions. From top to bottom: Words game, Dice Roller, our Shopping List (for
participants who did not bring their own).

After finishing all tasks, participants were asked a few questions about their experience in
the form of a brief semi-structured interview, completed a SUS [115] questionnaire, and a
few demographics and background questions.

<div class="[if(join(orderedWord, ' ') = solution, correct)]">

<button mv-action="delete(orderedWord)">Clear</button>
<button mv-action="delete(last(orderedWord))">Undo</button>

</div>
<span mv-multiple="word"
 mv-value="shuffle(split(solution))"
 mv-action="add(orderedWord, word)">

<div property="diceHistory" mv-multiple
 class="dice-[diceHistory]"></div>
<div property="dice" class="dice-[dice]">6</div>
<button mv-action="

add(diceHistory, dice),
set(dice, random(1,6))">Roll dice</button>

<fieldset>
<legend>Common items</legend>
<div property="common" mv-multiple
 mv-action="add(item, common)"></div>

</fieldset>

<li property="item" mv-multiple>
<input type="checkbox" property="bought">

<button mv-action="add(common, item)">

+ common items
</button>

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

169 /324

While participants generally understood properties, groups, and collections, many
participants were confused by the fact that no element in the HTML represented the
actual collection, it was instead a data node that existed purely in the Mavo tree.

This partly motivated changing the collection specification syntax from the original mv-
multiple to mv-list/mv-list-item shortly after the study, in addition to the many con‐
ceptual issues with the original design (discussed in Section 3.3.3.3.1).

All participants correctly answered all Formula² counting questions, even when they had
to count a deeply nested property, such as counting all hobbies from outside both collec‐
tions of men and women. Also, they seemed to have no trouble with filtered aggregates
like count(age > 3) with 17/20 getting them right, and the remaining three making only
minor syntax errors.

Participants had some trouble disambiguating between nested properties with the same
name across two collections (e.g. getting only women’s ages or only men’s hobbies). Like
SQL, Mavo uses dot notation for this (woman.age only returns women’s ages), which only
8/20 participants used. However, as there was no example of this in the Mavo Primer, we
did not consider these failures a sign of poor understanding of Mavo functionality.

In this part of the study, we wanted to explore what syntax participants found natural,
with the only suggestion being that they had to use the four functions (set, add, move,
delete). This suggestion was introduced to put participants in the mindset of writing
expressions instead of purely natural language. They were even encouraged to use different
function names if they wished to, and 6 did so at least once (half of them inconsistently).

Despite emphasizing that constraint, 6/20 participants did not use any functions in at
least one question, but wrote statements instead (such as age = age + 1) and 4 more
used a hybrid approach, with some parameters outside the function call, such as
add(woman) name=Mary age=30.

The median time each participant spent answering each question was 28.5 seconds.

Results & Discussion7.2.4
55.9 %

Data Model and Referencing

Counting Questions 56 %

Freeform Syntax

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

170 /324

As mentioned in Chapter 4, in Formula² expressions, property names can be used any‐
where and resolve to the local value or all values depending on the expression placement,
enabling very concise references for common cases (see Section 4.4.1). Thus, delete(man)
used “inside” a particular item in a collection of man objects would delete only that item,
while delete(man) “outside” the collection would delete all those man objects.

However, in their own syntax, many subjects wanted to make this distinction explicit.
8/20 used a keyword or function to refer to all items (e.g. man.all) at least once, and 8/20
used an explicit keyword or function for the current item, such as woman.current or this.
Only 3 participants did both. Interestingly, none followed their own referencing
schemes consistently, using these explicit references only in some of the questions or
some of the arguments, and plain property names elsewhere. This may indicate one reason
why this referencing scheme is useful: it eliminates error conditions.

More work is needed to understand why our subjects attempted this more verbose lan‐
guage when the more concise one would work. Based on participant answers to probing
questions, the survey format may have played a role: they were writing their answers in
text fields, separately from the HTML, so the context of their expression was removed. In
that setting, it may have been jarring to write the same expression as an answer to com‐
pletely different questions (e.g. “Delete all men” and “Delete current man” are both
delete(man) with our syntax). Perhaps if they’d been writing Mavo expressions inside
actual HTML, the disambiguation through context would have eliminated the desire to
disambiguate through syntax.

Another possibility is that novice programmers prefer verbosity. Pane et al. [69] showed
that 32% of non-programmers constructed collections by using the keywords every or all.
The use of such verbose syntax could be seen as a form of commenting, adding clarity
over more concise code. It is easy to provide syntactic sugar to allow such explicit refer‐
ences. In fact, Mavo already defines special all and this variables that work in a similar
way although we did not mention this.

We also observed the reverse, of users trying to be more concise. 7/20 participants indi‐
cated that the target of their action is the current item by omitting a parameter, such as
writing delete() for deleting the current item or move(man) for moving the current
woman to the collection of men.

Scope
56.2 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

171 /324

Stylistic choices such as punctuation should be distinguished from expressions which
must be regarded as incorrect because they are missing necessary information for the
operation. However, even in those cases, it is hard to be certain that there is a logic error
at play. Are the missing parameters actually missing, or did the participant have a clever
heuristic in mind for inferring them? And if not, is it a logic error, or merely a slip? In this
section, we describe some of the most common patterns of (ostensibly) underspecified
expressions that we observed.

By far the most common one was delete(<predicate>) with no reference to the
item(s) to be deleted. For example, delete(woman.age > 30) for deleting women older
than 30, or delete(hobby = Dining) to remove the hobby “Dining” from all people.
18/20 participants did this at least once, and 10 did so in both of the conditional delete
questions (Q9, Q13). One possible interpretation could be that in their mental model,
specifying the target of the operation is only necessary for disambiguation — when the
expression only includes one data reference, what else could we be targeting?

Another common pattern was using set(age + 1) to increment all ages. 15/20 partici‐
pants used a variation of this syntax. This is consistent with the proposed interpretation
above, that when there is only one data reference, they expect the update target to default
to it.

As further evidence for that theory, there was no such underspecification in Q8 (“Set
everyone’s name to their age”), which involved two properties. None of the participants real‐
ized the inconsistency when they answered the latter and did not think to back and
change their answer to the former. Asking a subset of participants about this at the end
revealed that some thought that age + 1 would function as an increment operator (like
C’s age++).

Both patterns indicate a distaste for parameter repetition, which on par with
natural language: “parameters” are only explicitly specified when different and are
otherwise implied.

5/20 participants wrote their expressions as if the “name” property was special, i.e. was an
implied primary key. For example they would use the identifier Mary to refer to the person
that has ``name = “Mary”`, without specifying “name” anywhere in their expression. This

Underspecified Expressions or Clever Heuristics?
56.5 %

Implicit Modification Target

Implicit Primary Keys

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

172 /324

did not seem to correlate with a lack of (self-reported) programming skill, as only one of
them had not been exposed to programming at all. It is unclear whether this has to do
with the word “name” itself, or with the fact that names were indeed unique in the data
we gave them.

Using objects as numbers was common, e.g. omitting “age” from delete(woman > 30) or
set(man + 1). Many participants attempted it at first, and 4/20 submitted their answers
with it. In many cases this turned out to be a slip, but two participants articulated a con‐
sistent mental model: it automatically operates on all numeric properties! In Pane et
al. [69], 61% of non-programmers modified the object itself instead of its properties,
which is even higher than the percentage we observed.

While commas are likely the most widely used argument separator, they did not appear to
be very natural to our subjects. 7/20 did not use any commas, but instead separated argu‐
ments by other symbols, or even whitespace. 5/20 only used commas for repetition of the
same argument type (e.g. delete(man, woman)). From the remaining 8 subjects, only 2
used commas exclusively to separate arguments. The rest combined commas with separa‐
tors that were more related to the task at hand.

16/20 subjects used = to separate arguments at least once, most commonly in set().
9/20 used to, primarily in set() and move(). Other separators were used by 3 people or
fewer (whitespace: 3/20, colons: 3/20, parentheses: 1/10).

Only 8/20 participants used multiple function calls in an expression (such as add(man)
add(woman)) The rest tried to express compound actions via arguments of one
function call (such as add(man, woman)), even when this was inconsistent with their
later responses.

In spreadsheets (like Formula² before data update actions), expressions have no side
effects and only produce one output, therefore there is never a need for multiple adjacent
function calls Therefore, using more than one function call may feel foreign and unnatural
to these users.

Implicit Value

Syntax 56.9 %

Argument Separation

Sequencing Function Calls

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

173 /324

In the prototype syntax, we had used different punctuation (period, comma, colon, semi‐
colon, and spaces) to separate the key from its value, the object from its properties, dif‐
ferent collection or items, and different functions. For example, for one of the questions
that we asked our participants (“add a new man and a new woman”), the prototype syntax
expected separate functions add(man) add(woman), which could be separated by spaces,
commas, or semicolons.

In another question where we asked our participants (Set everyone’s name to their age),
the answer should be set(name, age), the two properties, the key and the value here,
should be separated by comma, But 12/20 of our participants used = to separate the key
and the value in the function set() ON the other hand, in the move() category questions
(e.g. Move the current woman to the collection of men), 9/20 participants used the key‐
word to, so instead of writing move(woman, man) they wrote move(woman to man).

Four questions required filtering on a collection (cases where a corresponding SQL query
would need a WHERE or HAVING clause) to specify the target of the data update. For
example “Delete women older than 30 years old” (Q9), requires some way to filter the collec‐
tion of women by age, then delete all matched items. Our prototype syntax supported this
kind of filtering with a where operator, so woman where age > 30 would produce a list of
women whose age is over 30.

Half of our participants also defined a language-level filtering syntax, such as if or
where keywords, or parentheses (e.g. woman(age>30)) whereas 6/20 expected that the data
update functions would allow a filtering argument.

However, if appeared to be a slightly more natural keyword for our participants, with
5/20 using it at least once in these tasks, in contrast to 3/20 using where. 5/20 used fil‐
tering by predicate (e.g. delete(woman.age > 30)), 4/20 used filtering by parentheses, and
6/20 used filtering by argument.

5/20 expected that predicates would act as a filter of the closest collection item and
consistently used them in that fashion For example, they expected that man.age > 40
would return a list of men whose age was larger than 40, and wrote expressions like
set((man.age > 40).name to "Chris") for Q16 However, in Mavo currently the inner
expression returns a list of booleans corresponding to the comparison for each man.

Delimiters

Filtering 57.2 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

174 /324

Participant free-form syntax was consistent with our current prototype syntax (would
have produced the correct result) with no changes in 4.35/17 answers on average (σ =
2.16) and with minor changes (different symbols or removing redundant tokens) in
8.6/17 answers on average (σ = 2.06).

Some questions were asking about multiple operations of the same type, to
examine whether participants will use separate functions in the same action (e.g.
delete(man), delete(woman), or one function with separate multiple arguments (e.g.
delete(man, woman)).

Our prototype syntax supports that kind of aggregation for delete(), because deleting
an item does not require any other parameters. However, it cannot as straightforwardly be
supported in add(), as it supports specifying other parameters for the new item. We were
curious to see if our participants will be able to draw this kind of distinction by them‐
selves. From our survey, we found that 9/20 participants used separate functions in gen‐
eral, and 7/9 who used separate functions used them in the case of adding a new man and
a new woman However, 13/20 used one function (e.g. add(man, woman) It was also inter‐
esting to notice that only 3/20 used a separate functions for delete all man and women,
which also works But 4/7 participants who used separate functions for adding a new man
and a new woman mv-action="add(man), add(woman)") did not use separate functions
for delete all men and woman mv-action="delete(man, woman)").

In the survey, we have asked our participants a couple of questions about moving an item
to the beginning of its list (e.g. Move the current woman to the beginning of the women
collection — move(woman, 0) in our prototype syntax). We wanted to understand how
non-programmers would define “beginning”. Would they use a numerical index or a key‐
word? If a numerical index, would they use 0 or 1? If a keyword, would they use start,
top, or something else?

8/20 used the number 0, 3/20 used number 1, 3/20 used the keyword first, 2/20 used
the keyword top, and interestingly, others assumed that moving an item to the top of its
list would be the default behavior if no position was specified (e.g. move(woman)).

Relationship to Prototype Syntax
57.4 %

Multiple Function Calls or Multiple Arguments?

Which Position is first?

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

175 /324

In this part, we revealed our syntax prototype to participants and asked them to answer
the same questions, but this time using our syntax, to test the learnability and usability of
our prototype. Participants were not allowed to test their expressions, and were discour‐
aged from iterating as we wanted to capture their initial thinking. Therefore, correct
answers in this section are equivalent to participants getting the answer right on first try
and with no preceding training tasks.

Overall, 11 out of 17 questions had a correctness rate of 75% or above with 8 (Q1-3,
Q5, Q8-10, Q17) having 90% or above, i.e almost every participant got them right on
first try.

The most prominent patterns from the previous step persisted, though to a lesser
extent. 7/20 participants remained unable to use a sequence of two function calls for Q4
despite this being covered in the tutorial, and wrote add(man, woman) or a variation.
Curiously, based on later answers, all seemed to understand that the second parameter of
add() holds initial data, yet none realized the inconsistency. Similarly, 4/20 participants
still used set(age + 1) to increment ages, 2/20 used objects as numbers, and 8/20
used delete(``<predicate>``).

Almost all failures in “add with initial data” questions (Q11-12) were related to
grouping the key-value pairs, or incorrectly using equals signs (=) instead of colons (:) to
separate them.

Two questions asked participants to delete items with a filter, but had vastly different
success rates. 18/20 participants got Q9 correct, while only 9/20 got Q13 right, despite
the superficial similarity of the two questions. The difference was that Q9 was operating
on a list of primitives, so the values being deleted were also the same values used for filter‐
ing. It felt normal to write something like Participants had a very hard time using hobby
twice in Q13 (The correct answer is delete(hobby where hobby = ’Dining’) and even
those that got it right hesitated a lot before writing it.

By far the hardest questions were Q14 and Q16, where participants had to filter on one
property and set another. Only 7/18 of participants answered them correctly. All knew
which function to use, and almost all used where correctly for filtering, but were then
stuck at where to place the property they were setting. In Q14, a common answer was
set(man where age > 40, "Chris"). Users when then unsure where to put name. The
correct syntax in this case (if using where) would have been

Prototype Syntax7.2.5
57.7 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

176 /324

set(man.name where age > 40, 'Chris'), which is indeed confusing as one would
expect the property being set to be grouped with its value, not with the filtering predicate.

For the add() category, we asked them several questions (e.g. “Add a new man”, “Add a
woman with the name “Mary” and age of 30”, etc) that varies in their difficulties. 76.25% of
participants answered these questions correctly on first try. We noticed that 81.67% of
participants answered the questions that asked them to deal with one collection, man or
woman, (e.g. “Add a woman with the name “Mary” and age of 30”), but only 60% of them
answered the questions asking them to deal with both collections, man and woman, (e.g.
Add a new man and a new woman). Even after seeing examples of this when shown the
prototype syntax they still were unsure if they can write two functions in mv-action (e.g.
mv-action="add(man) add(woman)"). 7/20 of participants still added both man and
woman in the same function (e.g. mv-action="add(man, woman)").

For the delete() category, we asked several questions that varies in difficulties as well
(e.g. Delete all men, Delete women older than 30 years old, etc). 83% of participants
solved the questions in this category correctly from the first try. In this category, for the
questions that include conditions (e.g. Delete “Dining” as a hobby from everyone), we
found that they were more challenging for our participants than other questions that do
not include conditions (e.g. Delete all people). 93.33% of participants solved the ques‐
tions without conditions correctly and only 67.50% of them solved the ones with condi‐
tions. For the questions with conditionals (e.g. Delete “Dining” as a hobby from every‐
one), there were confused about hobby where hobby in delete(hobby where hobby=
"Dining") I need to say why?

The set() category was the most challenging category for our users. In total, only 59.56%
answered the questions in this category correctly. And like the delete() category, we had
two different sets of questions. Some with conditions (e.g “Rename every man with age >
40 to “Chris””) and others without (e.g. “Make current man 1 year older”). 73.33% of partici‐
pants solved the questions without conditions correctly, however, only 38.89% solved the
ones with conditions correctly. For example, for the question (Make current man 1 year
older), the right answer is set(age, age+1), nevertheless, our participants were confused
about how the set function works. They thought that they can just send the new value,

Adding Items 58 %

Deleting Items 58.1 %

Setting Values 58.2 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

177 /324

without specifying what to set it to, for example, some of our participants thought that
set(age+1) will automatically increase the age by one, others though that setting age+1 to
the man would be sufficient to increase the man’s age by one. Same thing with another
question we asked them (Rename every man with age > 40 to “Chris”), they did not know
what to set the name to, so they would do something like set(man where age >

40,"Chris") instead of set(name where age > 40,"Chris"), or they would not be sure
about the order of setting values and using where condition, so they would do something
like set(Set (name, ’Chris’ where age > 40)).

This involved questions such as “Move all men to the collection of women” (Q17), or “Move
the current woman to the beginning of the women collection” (Q15). The category move()
unlike set(), was much easier for users to understand. 93.07% of participants solved the
questions in this category.

16 participants completed the hands-on section of the study (see Figure 7.6). Half were
randomly assigned to the Dice Roller application, and the rest to the Words Game appli‐
cation. 13 also completed the Shopping List tasks.

All participants solved the first two tasks correctly and were able to display a random dice
roll (task 1) within a median time of 55 seconds and to display it in the history (task 2)
within a median time of 70 seconds. 5/8 and 3/8 did so on first try. 5/8 participants hesi‐
tated before using multiple function calls in mv-action, even if they had answered Q4
with two function calls in the survey, but they eventually got it right.

The third task was to prevent the current dice roll from showing up in the history.
Despite the second task being carefully worded to avoid implying a particular order, all 8
participants used add() after the set() they had written in the first task. This places the
current die in the history as well as the main display. The opposite order would have ren‐
dered the third task redundant, yet nobody realized this. Furthermore, only 1 participant
was able to solve the third task. All they had to do was use add() before set(), i.e. swap
the order of the two functions. This would add the dice to the history before they replace

Moving Items 58.4 %

Hands-on Tasks7.2.6

Dice Roller Application 58.5 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

178 /324

its value with a new random value. None of the other 7 participants was able to figure out
why this was happening, nor how to fix it.

Some participants thought that multiple function calls are executed in parallel, a
common misconception of novice programmers [67]. This appears to be a general failure
of computational thinking, not specific to Mavo or Formula².

This proved to be substantially easier than the dice roller. 6/8 participants succeeded in all
three tasks. Clicking on words to add them to the sentence took a median time of 3.6
minutes, deleting the last word (Undo) took 43 seconds, and deleting all words took 2.9
minutes. For the first task, a common mistake (3/8 participants) was to use move() instead
of add() to copy the clicked word into the sentence. Even after realizing their mistake,
they were ambivalent about using add().

13 subjects carried out the Shopping List tasks, copying to (task 1) and from (task
2) a “Common Items” collection. 6 participants brought their own application and 7
used ours.

Words Game 58.6 %

Shopping List 58.7 %

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

179 /324

Figure 7.7 The shopping list application with its solution (for participants who did not bring their own)

Application Copy to Common Items Copy from Common Items

Ours 6/7 (55s) 5/7 (50s)

Theirs 6/6 (133s) 5/6 (55s)

Table 7.6 Numbers of participants and median times for each Shopping List task

Almost all participants succeeded in both tasks, with only 1/13 failing the first task and
3/13 failing the second one. It took slightly longer for participants using their own app to
get started on the first task with a median of 133 seconds vs 55 seconds. By the second
task the difference had been eliminated (55 vs 50 seconds). Three participants were

<fieldset>
<legend>Common items</legend>
<div property="common" mv-multiple
 mv-action="add(item, common)"></div>

</fieldset>

<li property="item" mv-multiple>
<input type="checkbox" property="bought">

<button mv-action="add(common, item)">

+ common items
</button>

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

180 /324

confused about whether to use move() or add() to copy the shopping list item to the
common items, but quickly figured it out after trying.

For the participants who used our Shopping List application: For the first task, 6/7
participants solved this task on first try within a median of 55 seconds. For the second
task, also 5/7 solved the task correctly from the first try within a median time of 50 sec‐
onds. 1/7 participant was confused on where to add mv-action attribute.

For the participants who used the Shopping List application they created before the
study using Mavo: For the first task, 6/6 participants solved it correctly within a median
time of 133 seconds. For the second task, 5/6 were able to solve it successfully within a
median time of 55 seconds. 4/5 participants solved from the first try.

At the end of each session, subjects rated their subjective experience on a 7-point SUS
scale with 10 alternating positive and negative questions. The answers were then coded on
a 5-point scale and the SUS score was calculated according to the algorithm in [115]. We
removed one participant who had selected “Agree” on all 10 questions (positive and nega‐
tive), indicating lack of attention, a common problem with SUS.

Our raw SUS score was 76.3 (σx̅ = 2.43), which is higher than 77.5% of all 446 studies

detailed by Sauro [116] Our raw Learnability and Usability scores as defined by Lewis
and Sauro [117] were 78 and 69.7 respectively.

The overall reactions to Formula² + data mutation functions ranged from positive to
enthusiastic. Several participants remarked on the perceived intuitiveness of the syntax.
One participant answered several questions on the survey in one go, without looking at
the documentation, then paused and said “it’s so intuitive, I don’t even need to look at the
docs!”. Many other participants remarked on expressiveness; “it is very easy to do complex
things!”, as one of our participants phrased it.

Most participants described our data update actions as easy, even those who made sev‐
eral mistakes. Example quotes:

System Usability Scale (SUS)7.2.7 59.4 %

General Observations7.2.8 59.5 %

“This is very application-centered, a page that can actually do something!”.

❝

Chapter 7 Evaluation & Evolution  7.2 Second Lab Study - Formula² & Data Update Actions

181 /324

As with the first study, many participants liked being able to use this functionality by
editing HTML as opposed to editing in a separate file and/or language:

Users also liked the fact that they can build applications that typically require
programming.

Several participants commented positively on the where operator.

In September 2020, we contacted Mavo authors we found from website access logs and
interviewed five of them about their experiences. While this never resulted in a published
study, a very prominent pattern was present across most interviews: users generally loved

“I think they [data mutation functions] are very useful, easy, and approachable”

❝
“it is definitely more accessible than having to program, so that’s pretty cool”

❝
“They are easier and quicker to make things without
worrying about technicality. It is very easy to use”❝

“Interesting to be able to do these things from the HTML!”

❝
“It is interesting!..being able to do this in HTML, I was able to use it pretty easily,
once I knew what functions there were and the syntax it has it was very easy.”❝

“This is easier than JavaScript! If I wanted to do something complicated I
would be frustrated to use JavaScript cause I’m not good at it, this is easier”.❝
“It’s easier and quicker to make things without
worrying about technicality. It’s very easy to use”.❝

“the where syntax is like natural language, I did not
expect it to be there and written as if I am saying it”.❝

Mavo in the Wild Informal Interviews7.3 59.8 %

Chapter 7 Evaluation & Evolution  7.3 Mavo in the Wild Informal Interviews

182 /324

the parts of Mavo that were core to its design: they found the syntax intuitive and the
capabilities very powerful.

However, they were having a lot of trouble with superficial aspects of the design and
prototype implementation, the most prominent of which were:

They wanted server-side rendering for their content, not having data fetched
client-side
They did not like the loading indicator and found it too intrusive
Performance was slow.

More often than not, these were insurmountable problems to them and eventually drove
them away.

For Mavo to gain wider adoption, it is important to invest in addressing such issues,
even if the research value of such work is only in the longer term.

Figure 7.8 The four apps completed by participants in the Mavo-Shapir study: (1) Dailymotion playlist viewer, (2)
YouTube video search, (3) Yelp & Foursquare search, (4) Event searching app combining SeatGeek, Ticketmaster, Songkick.

Alrashed et al [97] integrated Mavo with ShapirJS, a JavaScript library that normalizes
data from various APIs into schema.org [98] ontologies and exposes them as “live”
JavaScript objects that can seamlessly perform asynchronous API calls to fetch additional
data and can update remote data via standard JavaScript object manipulation methods.

Shapir: Standardizing and Democratizing Web APIs7.4 59.9 %

Chapter 7 Evaluation & Evolution  7.4 Shapir: Standardizing and Democratizing Web APIs

183 /324

http://schema.org/

Combined, ShapirJS and Mavo make it possible to create standalone web applications
that read, combine, and manipulate data over multiple web APIs without writing any
JavaScript or back-end code.

Mavo-Shapir was implemented as a Madata backend, and packaged as a Mavo
plugin. To support this integration, Formula2 was extended to support asynchronous val‐
ues, which opened up many new possibilities for what Formula2 expressions.

They then evaluated this combined system in a lab study with 16 participants (9
female, ages 18-60). Of these, 8 identified as beginner or intermediate in HTML, and 8
as advanced or expert. Their programming skills ranged from none to skilled: 2 with no
programming skills, 6 beginners, 6 intermediate and 2 skilled. In terms of Mavo familiar‐
ity, 7 participants had used Mavo before, 4 had heard of it but not used it, and 5 had never
heard of it.

Participants were given functional Mavo apps operating on local data, and they had to
adapt them to work with live data from various APIs. All participants were able to
complete the tasks in under 4 minutes, with apps 2-3 taking them about a minute on
average. There was no correlation between time taken and programming skill or Mavo
familiarity.

Participants were generally very positive about the experience; they found the combina‐
tion of Mavo and Shapir easy to use, and were impressed by how quickly they could build
applications that combine data from multiple sources.

Alrashed et al later integrated Mavo-Shapir with Wikidata, a free and open knowledge
base that can be read and edited by both humans and machines [118] to create mashups
of data from multiple APIs. Effectively, Wikidata is used as a universal join table to cross-
reference entities across different third-party APIs (see Figure 7.9 for an example).

They then evaluated this system in a lab study of 12 Wikidata users. Of the partici‐
pants, 8 identifed as beginner or intermediate in HTML, and 4 as advanced or expert.
Additionally, 7 described themselves as beginners or worse in any programming language,
while 5 considered themselves intermediate or better.

Wikxhibit: Using Mavo and Wikidata to Author
Applications that Link Data Across the Web

7.5
60.2 %

Chapter 7 Evaluation & Evolution  7.5 Wikxhibit: Using Mavo and Wikidata to Author Applications that Link Data Across the Web

184 /324

Figure 7.9 An artist page made with Mavo and Wikxhibit that displays integrated data from different websites: general
information about the artist from Wikidata, their albums and tracks from Spotify, their videos from YouTube, and their
events from Songkick.

Of these participants, 7 participated in the structured study, where they were given static
HTML & CSS scaffolding for three applications, and they had to write Mavo HTML to
pull in different data sources and display their data in a suitable way.

After going through a brief tutorial, 6/7 users went on to complete all the tasks for
their three applications with no failures (1/7 had to leave early). They took, on average, 14
minutes (Tech Company, 6 tasks), 9 minutes (US President, 5 tasks), and 5 minutes
(Botanical Gardens, build an app from scratch) to build the entire application.

One study finding relevant to Mavo was that a common slip was participants forget‐
ting to add mv-multiple attributes and being confused when they could only see one
item. This is part of Mavo’s schema mapping heuristics (Section 3.6.2), to allow seam‐
lessly converting between scalars and lists without data loss and displaying the same data
across different Mavo apps. However, perhaps mv-path could be used instead to explicitly

<div mv-app mv-source="wikxhibit"
 mv-source-service="wikidata"
 mv-source-id="Q19848">

<h1 property="label"></h1>
<div property="SpotifyArtist">

<div property="albums" mv-multiple>

<h5 property="name"></h5>
<p property="numTracks"></p>

</div>
<div property="tracks" mv-multiple>

<iframe src="[embedUrl]"></iframe>
</div>

</div>
<div property="YouTubeChannel">

<div property="videos" mv-multiple>
<iframe src="[embedUrl]"></iframe>

</div>
</div>
<div property="SongkickArtist">

<div property="events" mv-multiple>
<h5 property="name"></h5>
<p property="location"></p>
<p property="startDate"></p>

</div>
</div>
</div>

HTML

Chapter 7 Evaluation & Evolution  7.5 Wikxhibit: Using Mavo and Wikidata to Author Applications that Link Data Across the Web

185 /324

opt-in to this behavior. A compromise could be to display all array items, but not add any
UI for adding new ones until mv-list-item (nee mv-multiple) is specified.

Five participants participated in the later freestyle study, creating their own applications
from scratch. All were able to accomplish the applications they set out to build, in less
than 30 minutes (3/5 in less than 15). The applications created included a page about the
movie “The Big Lebowski”, a presentation showing a list of the superior courts of
California a page showing political parties of a user-provided country specifed via
an input field, and an application shows information about comic strips that are part
of xkcd 3.

The next chapter presents Lifesheets, whose contribution is twofold: First, to explore
the value and feasibility of empowering end-users to create their own tracking
applications, and second, to expose lightly abstracted Mavo concepts (especially Formula2)
to non-programmers via a GUI.

Its user study provides insights on both, and is described in detail in Section 9.7. Here
we pull in only the high level insights that relate to Mavo concepts.

By exposing forms to generate formula calls we were able to short-circuit many syntax
errors, while still exposing enough of Formula2 to get valuable insights. Additionally,
unlike the previous Formula2 studies, it included a control condition, where users were
also writing spreadsheet formulas for the same tasks (between subjects on the task, within
subjects on the condition).

Lifesheets: Exposing Mavo
Concepts to Non-programmers

7.6
61.7 %

xkcd.com
3

Chapter 7 Evaluation & Evolution  7.6 Lifesheets: Exposing Mavo Concepts to Non-programmers

186 /324

http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-3
https://xkcd.com/
http://localhost:8002/phd/chapters/evaluation/#fn-evaluation-3

Overall, the study validated our hypothesis that novices can largely understand and use
Formula2 for grouping, aggregation, and temporal calculations, and that these tasks are
very difficult with spreadsheets.

Despite spreadsheets supporting UI features that make these tasks easier (e.g. data vali‐
dation, pivot tables), the fact that these are separate features that users need to know
about in practice meant that they were not used. Instead, users were painfully trying to
accomplish these tasks with formulas, until they gave up or did them manually or semi-
manually (e.g. emulating a pivot table via a manual list of values and SUMIF() formulas).

A recurring theme we observed was the end-users’ distaste for indirection. Participants
generally expected to be able to be able to accomplish their goals via a combination of UI
settings, or a single formula call, and continued trying different parameters until they
either got the right result (often as a happy accident rather than an accurate mental mod‐
el), or got frustrated and gave up.

While not appearing in this study, there were also use cases that required auxiliary data
in Formula2 (which can only be created via the host environment, e.g. Mavo). A common
example is nested aggregates (e.g. average of averages) — before the in operator, they
required a hidden Mavo property and could not be done with Formula2 alone (see
Section 4.7.3).

A big takeaway from the study was that temporal calculations in spreadsheets were
extremely painful, whereas the Formula2 counterpart was generally a lot more understand‐
able. Perhaps the most characteristic such case is calculating intervals and displaying them
in a human readable way (see also Section 4.7.1.3), for which Formula2 provides a high
level primitive.

However, even with Formula2 there were some recurring mistakes that highlight areas
for improvement, mainly around values only being useful when used a certain way, and
not another that users tried. This included:

Attempting to do math with duration() (which returns an array of strings)
Printing out $now and getting confused at the result (a number of milliseconds)
Setting a time property to $now and getting confused that it didn’t work (since it
expects a string like "HH:mm", and $now is a number)

Formula27.6.1
61.8 %

Temporal Calculations 61.9 %

Chapter 7 Evaluation & Evolution  7.6 Lifesheets: Exposing Mavo Concepts to Non-programmers

187 /324

These attempts are reasonable things that should and could work if these functions and
special properties return objects that retain their metadata and thus can be used in a
variety of ways, rather than primitives like numbers of strings.

Mavo HTML was more highly abstracted, and thus many study findings are less directly
applicable to it. However, there were still some insights that are relevant.

The biggest issue was related to Saving. Having to click a Save button to persist their
data felt foreign to users, who expected their data to be saved automatically. While Mavo
supports an mv-autosave attribute, it is discouraged for backends that save to version con‐
trol systems, in order to maintain a meaningful edit history (which can later be exposed
via a UI). Perhaps a best of both worlds approach could be to autosave to a local storage,
that is periodically synced to the VCS.

Placeholder entries (which Mavo automatically creates unless mv-initial-items="0" is
used) seemed natural while the application was being built, but baffled users when they
attempted to use the deployed application for the first time.

Mavo & Madata7.6.2 62.1 %

Chapter 7 Evaluation & Evolution  7.6 Lifesheets: Exposing Mavo Concepts to Non-programmers

188 /324

 6,183 words (18 min read)

As an additional resource, a list of case studies is presented in this chapter. These
showcase all technologies in the Mavo ecosystem working together to produce high
fidelity applications.

Some of them are included because they represent particularly common use cases,
others because they push the boundaries of what is possible with Mavo, and others
because they showcase interesting patterns.

This section includes case studies of a few typical CRUD applications, some of very
common mainstream use cases (blog, e-shop, portfolio), and some more specialized (re‐
search group website, CSS WG Disposition of Comments).

These types of applications are exactly the type of applications that Mavo was designed
for, though some still showcase interesting patterns, such as integrations with third-party
services.

This case study showcases how Mavo can be used to build multi-page applications, and
how it can integrate a third-party service (Disqus) to support comments.

CHAPTER 8

Case Studies

CRUD Applications8.1 62.4 %

Blog with Disqus Comments (by Lais Tomaz)8.1.1 62.5 %

189 /324

Figure8.1 A fully functional blog built with Mavo. The live version can be accessed at mavo.io/blog.

This application consists of two HTML files: index.html and post/index.html, with 40
and 60 lines of HTML respectively. It requires no JavaScript besides the edits needed to
Disqus’ embed code (described below).

The index.html file lists all posts, with their metadata and an excerpt:

Architecture

Displaying a List of Posts

<div mv-app="blog" mv-plugins="markdown"
 mv-storage="https://github.com/mavoweb/mavo.io/blog/posts.json">

<section id="[id]" mv-multiple property="post">
<h2>

<meta property="id" mv-default="[idify(title)]">

</h2>

<div property="excerpt" class="markdown">[excerpt(content, words: 100)]</div>
<footer>

Posted on <time property="date" mv-default="[$today]"></time>
by

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

190 /324

https://mavo.io/blog

An id is generated from each post based on the title, but can also be edited by the user.
Note that <meta> elements are Mavo’s recommended way for storing metadata that is not
displayed to the end-user (but become visible and editable in edit mode).

The post/index.html file displays a single post in full. Its structure is very similar (except
the content property is displayed in full). The main difference the mv-path attribute in the
app definition:

This defines a two-way data transformation that consists of subsetting the fetched data
before it is rendered, so that the Mavo app defined within only needs to handle a single
post, and then recombining the edited data back into the original data structure when
saving. This can be applied both to the entire application, or to individual properties,
which can be useful when handling pre-existing data, such as data fetched from an API.

To embed comments on a post, we use Disqus, a popular commenting service. Disqus
provides a JavaScript snippet that needs to be included on the page where comments are
to be displayed. As instructed by Disqus, this needs to be modified to communicate the
page id and URL to Disqus. The parts we had to add or modify are highlighted below:

• Comments
</footer>

</section>
</div>

HTML (continued)

Displaying A Single Post

<div mv-app="blog" mv-plugins="markdown"
 mv-storage="https://github.com/mavoweb/mavo.io/blog/posts.json"
 mv-path="post/id=[url('post')]">

HTML

Displaying Comments

<div id="disqus_thread"></div>
<script>
var disqus_config = function () {

let id = Mavo.Functions.url("post");
this.page.url = "https://mavo.io/blog/post/?post=" + id;
this.page.identifier = id;

};

(function() { // DON'T EDIT BELOW THIS LINE
var d = document, s = d.createElement('script');

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

191 /324

https://disqus.com/

Disqus also provides JS code for displaying the number of comments for each post on the
list page. To make that work with Mavo, it needs to be wrapped in an event listener. The
code we added to Disqus’ snippet is highlighted below:

Currently, our blog posts don’t have very nice URLs, e.g. a blog post with an id of foo is
accessed at /post/?post=foo. Ideally, we’d want a URL such as /post/foo. This can be
done with Mavo, as its url() function handles both patterns, so we would not even need
to modify our code. However, to do that we would need to first route unknown (not
found) URLs of that format to the post/index.html page. Mavo cannot help with that, as
it operates on the client side.

Most web servers can be configured to do this, but the code is not always straightfor‐
ward code for novices to write. For example, in the popular Apache web server, this can be
done with a .htaccess file, but it requires regular expressions:

With other servers it can be simpler for common cases like this. For example, on Netlify, a
“serverless” web hosting provider, this can be done with a _redirects file:

s.src = 'https://mavo-blog.disqus.com/embed.js';
s.setAttribute('data-timestamp', +new Date());
(d.head || d.body).appendChild(s);
})();
</script>

HTML (continued)

<script id="dsq-count-scr" src="//mavo-blog.disqus.com/count.js" async></script>
<script>

document.addEventListener("mv-load", evt => {
DISQUSWIDGETS.getCount({reset: true});

});
</script>

HTML

Limitations 64.4 %

URL Structure

RewriteEngine On
RewriteRule ^post/.*$ /post/index.html [L]

CODE

Chapter 8 Case Studies  8.1 CRUD Applications

192 /324

Variations of this pattern can be used to build more specialized types of multipage web‐
sites. Some examples are presented below.

Figure8.2 A multipage recipe manager built with Mavo. The live version can be accessed at forkgasm.com.

In this example, a page is used to list recipes and a different page to display a
single recipe.

Instead of a single content property for the entry content, each recipe here contains a
list of ingredients and a list of steps.

The recipe manager also showcases a current limitation of Mavo: the lack of a primitive
for data formatting. Indeed, amounts need to be displayed as fractional numbers, such as

/post/* /post/index.html 200

CODE

Variations 64.6 %

Recipe Manager

Chapter 8 Case Studies  8.1 CRUD Applications

193 /324

https://forkgasm.com/

0.125, rather than the far more common fractional numbers that recipes typically use,
such as ⅛.

Figure8.3 A fully functional invoicing application built with Mavo. The live version can be accessed
at mavo.io/demos/invoice.

Here, a list of all invoices is displayed on one page, and each invoice is displayed on
another. Each invoice includes a list of services provided, with amounts for each, and a
total sum. The consultant’s information (company name, address, logo etc.) is defined
once as root properties, and copied on every invoice.

This is a fully-functional e-shop application, which integrates with PayPal, a well-known
payment provider that provides an HTML integration for its API through form submis‐
sion with a predefined parameter schema.

This case study highlights several concepts of the Mavo development approach, but is
also an excellent example for the interoperability of HTML-based approaches. Neither

Invoicing & Expensing Application

E-shop with PayPal Checkout8.1.2 64.8 %

Chapter 8 Case Studies  8.1 CRUD Applications

194 /324

https://mavo.io/demos/invoice
https://paypal.com/
https://developer.paypal.com/api/nvp-soap/paypal-payments-standard/integration-guide/formbasics/

Figure8.4 A fully functional e-shop built with Mavo. The live version can be accessed at mavo.io/demos/eshop.

Mavo nor PayPal needed to know about each other, but because they both support
HTML-based syntaxes, they work together seamlessly, with no need for any plugin or
integration.

While conceptually a single Mavo application, this is architected as two Mavo apps, each
with different access control: one for managing the list of products, and one for managing
the shopping cart. The former is viewable by everyone, but editable only by the e-shop
administrator, and stored on a cloud service like GitHub:

Architecture 64.9 %

<div mv-app="eshop" mv-storage="https://github.com/…/products.json" mv-bar="no-login">
<article property="product" mv-list-item>

<button mv-action="add(product, cart.product)">Add to cart</button>

</article>
</div>

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

195 /324

https://mavo.io/demos/eshop

The latter is editable by everyone and stored locally:

The entire application is also a form that submits to PayPal. Any form elements with name
attributes become part of the form submission, and communicate data to PayPal. Hidden
form elements communicate variables that do not need to be displayed in the UI.

To send the product name and price to PayPal without allowing them to be edited by
the user, we set a name on the generated editing element via mv-editor-name and added
the HTML inert attribute to prevent the user from interacting with it and its descen‐
dants. A simpler but more verbose solution would be to use more hidden inputs, with for‐
mulas to copy the name and amount properties into them, and mv-mode="read" so that no
editing UI is generated.

<form mv-app="cart" mv-storage="local" mv-autosave mv-mode="edit"
 action="https://paypal.com/cgi-bin/webscr" method="POST">

<table>
<thead>

<tr><th>Product</th> <th>Quantity</th> <th>Price</th> <th>Subtotal</th></tr>
</thead>
<tbody mv-list mv-initial-items="0" mv-item-bar="delete">

<tr property="product" mv-list-item>
<th property="name">

</th>
<td>

<input type="number" property="quantity" name="quantity_[$index + 1]" value="1">
</td>
<td property="amount" mv-editor-name="amount_[$index + 1]" inert></td>
<td property="subtotal">[amount * quantity]</td>

</tr>
</tbody>
<tfoot>

<tr><th colspan="3">Total:</th> <td>[sum(subtotal)]</td></tr>
</tfoot>

</table>

<button disabled="[count(product) = 0]">Check out with PayPal</button>

<input type="hidden" name="cmd" value="_cart">
<input type="hidden" name="upload" value="1">
<input type="hidden" name="business" value="admin@fooshop.com">
<input type="hidden" name="currency_code" value="USD">

</form>

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

196 /324

https://html.spec.whatwg.org/multipage/interaction.html#the-inert-attribute

The two apps interact with each other: the eshop app uses a data action to add products to
the cart, by copying them to the cart app’s storage. Note that Formula2 implicit scoping
does not apply across apps: since the trees are disconnected, the id of the other app
(cart) had to be explicitly used. But once we obtain a reference to that app’s data tree,
implicit scoping works as expected.

This is not a bug or a limitation, but an intentional design decision. We felt that the
small usability benefit of being able to reference properties from other data trees is out‐
weighed by the potential for confusion and mistakes, since other Mavo applications may
be very spatially disconnected from each other, and since cross-app references are rela‐
tively uncommon, the extra verbosity is not a big issue.

By default, Mavo uses two modes: a read mode (the default) which is used for presenting
data, and an edit mode which is used for editing data in place. However, certain
applications, such as the shopping cart here only need one mode. Sometimes that is only a
read-only mode. In these cases, the mv-mode attribute can be set to read to make the app
(or parts of it) read-only. However, there are use cases that benefit from Mavo’s editing
controls, but do not need a read mode, they are edit-only. These can be specified via
mv-mode="edit".

The shopping cart is a good example of this: we want certain editing functionality to
be always there (such as deleting collection items or editing quantities), certain editing
functionality to never be there (such as adding new products). Editability is fragmented
spatially rather than temporally.

To keep this demo simple, the cart is persisted locally. However most big e-shops support
user accounts and then persist the cart across devices. While it is trivial to change the cart
app to use cloud storage instead of local storage, this does not exactly give us the same
pattern, unless that cloud storage allowed public writes and we were happy to store each
guest’s cart in it. But more likely, what we actually want is a hybrid: local storage for
guests, and cloud storage for authenticated users.

This is still possible but certainly not easy. We can use formulas as the mv-storage value
to use local storage for non-authenticated users and cloud storage for authenticated users,

Cross-app Data Flow

Edit-only Apps

Perisist Cart Across Devices?

Chapter 8 Case Studies  8.1 CRUD Applications

197 /324

but this introduces a bit of a chicken-and-egg problem: how would the user log in to the
cloud service, if there is no login UI because the app is using a local storage backend?

Since we can only have one storage backend per app, we would need a third app that
is always cloud-based, and only contains the login UI, and take advantage of the fact
that Mavo will synchronize user accounts across apps using the same type of backend
(e.g. GitHub).

We can then use a formula to set the cart’s storage backend based on whether the user is
logged in or not:

This is still not perfect: if a user starts shopping as a guest and then logs in, their cart will
be lost. We can use mv-init="local" to address this, but that only works if the remote
data is empty. It remains an open question what the best primitive is for handling such
cases in a general way.

The administrator gets the usual Mavo UI, with its promiment toolbar. For the public, the
toolbar is hidden, by hiding its login button (via mv-bar="no-login"). Since logged out
users see no other controls, this hides the entire toolbar for them. Instead, there is a dis‐
creet “Admin login” link in the footer:

The link has class mv-login which makes it behave like a login button automatically
(hidden for logged-in users, triggers login UI when clicked, etc.). Every toolbar button
has a corresponding class so that its functionality can be reused on custom UI elements
even outside the toolbar. The link target is ?login, which is a special URL that triggers
the login UI for the first Mavo app in the page. Such a link is available in every Mavo
application (?login shows login UI for the first Mavo app in the page but a specific app

<div mv-app="cart_login" mv-source="https://url/to/cloud">

HTML

<form mv-app="cart" mv-storage="[if ($user or cart_login.$user, 'https://url/to/cloud', 'local')]">

HTML

UI Customization 67.7 %

Discreet Authentication UI

Admin login

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

198 /324

id can be specified as the URL parameter’s value). This allows for the login UI to be
entirely hidden if the author desires.

Since cart.product is a collection that is only edited via a data action, showing function‐
ality to add items to it is meaningless. We can hide the add button using regular CSS:

To limit adding and reordering via the item bar, Mavo provides an mv-item-bar attribute
that can be used similarly to mv-bar:

This will only show the delete button next to each item, and hide any controls for adding
and reordering items.

From a Mavo point of view, this is a very simple use case. So simple in fact, it is included
here as a case study on how such a high fidelity application allowing images to be
uploaded, pasted, or linked and edited in a number of ways can be built with such a small
amount of code.

The entire page is 25 lines of HTML, with no JavaScript, of which only 8 are
Mavo markup:

Individual pages for each painting could be easily added using a similar pattern as the
blog case study (Section 8.1.1). Note that reactive defaults crop up even in such a simple

Restricted List Editing

[mv-app="cart"] .mv-add-product {
display: none;

}

CSS

<tbody mv-list mv-initial-items="0" mv-mode="edit" mv-item-bar="delete">

HTML

Artist Portfolio8.1.3 68.1 %

<main mv-app="portfolio" mv-storage="https://github.com/mavoweb/data/portfolio">
<div mv-list property="painting">

<a mv-list-item mv-attribute="none">

<p property="name" mv-default="[readable(to(filename(image), '.'))]"></p>

</div>

</main>

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

199 /324

Figure8.5 An editable artist portolio. The live version can be accessed at mavo.io/demos/portfolio.

application: the filename of the image is processed to create the default value for the name
property, a common pattern for these types of applications.

Images are resized by the browser to display thumbnails, but the full image is still down‐
loaded. It would be possible to handle thumbnail generation in Mavo via a plugin that
generates thumbnails locally when uploading an image, but due to the Web’s same origin
policy [119, 120], this would not be possible for linked images.

This application showcases how the current Mavo primitives can be used to emulate a
graphical schema.

Limitations 68.6 %

Research Group Website8.1.4

Chapter 8 Case Studies  8.1 CRUD Applications

200 /324

https://mavo.io/demos/portfolio

Figure8.6 A fully functional research group website built with Mavo. The live version can be accessed
at haystack.csail.mit.edu.

The application consists of three Mavo apps, one for each section of the website: people,
projects, and publications, each reading and writing a different JSON file. This is a
design decision primarily to produce reusable JSON files that can also function as a basic
data API, and to keep their size manageable, but the website could have easily used the
same file for all three sections.

As with the e-shop example, the Mavo toolbar is only visible for logged in users.
Logged out users simply see a discreet “Log in to Github to edit data” link in the footer of
each section.

The people application includes a collection of people with their names, images, URLs,
and other information:

Architecture 68.7 %

<article property="member" typeof="Person" mv-multiple>

<h3 property="name">Name</h3>

<!-- job title, social media handles, etc. -->

</article>

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

201 /324

https://haystack.csail.mit.edu/

It then uses this to generate a <datalist> as a dynamic collection over the names of all
people in the group:

Then, on the collections that need to reference people, the generated editing UI is linked
to this <datalist> to facilitate data entry via an (HTML-native) autocomplete widget. A
hidden computed property is then reactively populated with the selected person’s data.
For example, this is how the leader of a project is selected:

For publications, we only need to look up the author URL, so we can avoid defining the
hidden property:

This is essentially using the person’s name as a unique, immutable identifier, i.e. a primary
key. If there is no property that is a good candidate for this, a unique identifier can be
generated using a formula (e.g. idify(name)), and used as the default value of a hidden
property, so that it can be edited by the user:

<div hidden>
<datalist mv-list id="member_list" mv-value="name">

<option mv-list-item></option>
</datalist>

</div>

HTML

<footer>
Led by

Leader
<meta property="leader" mv-value="people where name = leader_name" />

</footer>

HTML

<p mv-list class="authors">
<a property="author" mv-attribute="none" href="[people.url where name = author]"
 mv-edit-list="member_list">

</p>

HTML

<meta property="id" mv-default="[idify(name)]" />

HTML

Chapter 8 Case Studies  8.1 CRUD Applications

202 /324

Lookups would then need to be adjusted accordingly.

Many issues with this pattern stem from the fact that it is essentially a workaround
around the lack of real primary keys and foreign keys in Mavo.

Uniqueness of the property used as a key is not enforced. It could be communicated to
the user via form validation, but this would simply be informative, it would not prevent
them from saving corrupted data.

But a bigger issue is that this suffers from poor closeness of mapping, breaking the declar‐
ativeness of general Mavo syntax. Authors cannot express their intent with the language
primitives, so they have to express low-level steps for accomplishing their goal.

These issues are discussed in more detail in the next chapter.

Figure8.7 A custom app to manage Disposition of Comments for the CSS Working Group, showcasing how Mavo can be
used to build custom intersecting filtering widgets. The live version can be accessed at drafts.csswg.org/issues?spec=css-images-
3&doc=cr-2012.

Limitations 70 %

CSS WG Disposition of Comments8.1.5 70.1 %

Chapter 8 Case Studies  8.1 CRUD Applications

203 /324

http://localhost:8002/phd/chapters/discussion/#data-model
https://drafts.csswg.org/issues?spec=css-images-3&doc=cr-2012
https://drafts.csswg.org/issues?spec=css-images-3&doc=cr-2012

Dispositions of Comments is part of the process for advancing a W3C specification to the
next stage, by ensuring all issues raised against a draft specification by the community
have been considered. It was typically managed as plain text at the time. This application
was authored to improve this process (though as WG issues moved to GitHub Issues, it
was later replaced by a convention based on GitHub labels).

This application showcases how filtering and sorting functionality can be implemented
in Mavo, but is also an excellent example of the kinds of data management applications
that Mavo was designed for: the long tail of use cases that are too niche individually, yet
vast in aggregate.

We can use a separate filters Mavo app to persist filters locally:

Each filter is a dynamic collection. For filters on single-valued properties, such as status
the grouping operator can be used:

Architecture 70.2 %

<aside mv-app="filters" mv-storage="local">
<!-- Filtering UI -->

</aside>
<main mv-app id="issues"
 mv-storage="https://github.com/w3c/csswg-drafts/[url('spec')]/issues-[url('doc')].yaml">

<!-- List of issues -->
</main>

HTML

<fieldset mv-list property="status" mv-value="issues.issue by status">
<legend>Filter by status</legend>
<label mv-list-item>

<input type="checkbox" property="show" checked>
 ([count($items)])

</label>
</fieldset>

HTML

note
Note that while the status property in the dynamic collection is not editable (as statusFilter is a computed
property), we had to specify mv-editor="#statuses" which points to a <select> menu, in order to get the same
displayed text for each value. Admittedly, the closeness of mapping for this could be improved…

Chapter 8 Case Studies  8.1 CRUD Applications

204 /324

Unfortunately, as described in the Formula2 chapter, the grouping operator does not cur‐
rently work well with multi-valued properties, such as issue tags. For those, we need to use
a lower level approach, essentially doing the grouping ourselves:

Then, to filter the issues based on the selected tags, we can define a hidden property as an
immutable collection, with a value for each filter:

And then use an aggregate disjunction of these properties to determine if each issue
should be hidden:

One limitation of this approach has already been discussed above: the lack of a good way
to group by multi-valued properties in Formula2. But the bigger issue is that this approach
is too low-level for such a common task. This issue is discussed in more detail in the next
chapter.

<fieldset>
<legend>Filter by tag</legend>

<label property="tag" mv-list-item mv-value="unique(issues.tag)">
<input type="checkbox" property="show" checked>
[tag]
([count(issue.tag = text)])

</label>
</fieldset>

HTML

<meta property="hidden" content="[count(filters.status where show and id=status)]" />
<meta property="hidden" content="[intersects(tag, filters.tag where show)]" />

HTML

<article property="issue" mv-list-item hidden="[or(hidden)]">

HTML

aside
Why use the HTML hidden attribute rather than Mavo’s mv-if? Because mv-if actually affects the data model,
and thus we would no longer be able to display values for hidden items, making it impossible to revert the filter!

Limitations 71.4 %

Chapter 8 Case Studies  8.2 Graphics Builders

205 /324

http://localhost:8002/phd/chapters/formula2/#grouping

In this section, we present two applications that push the boundaries of what is possible
with Mavo, by using it to build GUIs that generate graphics.

Both of these showcase a pattern for creating heterogeneous collections, as well as
different ways to use Mavo to generate code in different languages: SVG in the first
application, JavaScript and LOGO in the second.

Figure8.8 A fully functional e-shop built with Mavo. The live version can be accessed at mavo.io/demos/svgpath.

This is certainly not a typical CRUD application, but this SVG path demo showcases
many interesting patterns. It also makes a slightly different argument on interoperability:
HTML-based approaches are only only interoperable with HTML itself, but also any
syntax that can be embedded in it, such as SVG. This means that Mavo can be used to
create interactive graphics and diagrams, or even — as this demo shows — entire editors.

Graphics Builders8.2
71.5 %

SVG Path Builder8.2.1

Chapter 8 Case Studies  8.2 Graphics Builders

206 /324

https://mavo.io/demos/svgpath

The entire application is 126 lines of HTML, with no JavaScript.

The main data structure of this application is a collection of path segments (segment),
each item corresponding to a single SVG path segment command. There are also root
level properties to parameterize the coordinate system (width and height) and style
(fill, stroke, strokeWidth). of the generateed graphic.

A computed pathsummary property within each item is used to generate the actual
SVG path string for that segment:

Then, outside the collection, all these are combined into another computed property, con‐
taining the entire path, which is also displayed to the end-user for copying:

Then, all that is needed to generate the download link is this:

The actual inline preview is a little longer, as it also displays conveniences that improve
feedback for the end-user, such as a grid, and a marker to display the current position of
the last point of the path:

Architecture
71.6 %

<meta property="pathsummary"
 content="[if(absolute, uppercase(type), type)] [arcFlags] [x1] [y1] [x2] [y2] [x] [y]">

HTML

<textarea property="path">[replace(join(pathsummary, ' '), ' ', ' ', 10)]</textarea>

HTML

note
The replace() is only there to make the path string more readable by collapsing sequences of spaces, and is not
required (10 is the number of times it should run on it own output).

<a href='data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 [width] [height]">
<path d="[path]" fill="[fill]" stroke="[stroke]" stroke-width="[strokeWidth]" />

</svg>' download="path.svg" target="_blank">⏬ Download SVG

HTML

<svg viewBox="0 0 [width] [height]" preserveAspectRatio="xMinYMin">
<pattern id="grid" viewBox="0 0 10 10" patternUnits="userSpaceOnUse" width="10" height="10">

<line y2="10" vector-effect="non-scaling-stroke" />
<line x2="10" vector-effect="non-scaling-stroke" />

</pattern>
<marker id="pos" viewBox="-1 -1 1 1" markerUnits="userSpaceOnUse"
 markerWidth="1" overflow="visible" >

<circle r="1" cx="0" cy="0" />

HTML

Chapter 8 Case Studies  8.2 Graphics Builders

207 /324

This application showcases a common pattern for editing and storing heterogeneous col‐
lections, i.e. collections where each item has different properties.

Typically, these have some overlap across different types of items, otherwise there
would be little reason to store them in the same collection. Path segments are no excep‐
tion: they all have a type, a boolean absolute property, and X and Y coordinates for their
end point (except one: close path (z) segments do not take any coordinates).

Frequently in heterogeneous collections, there is a main property that determines the
item type, in this case the path segment type:

Then we can use declarative mv-if conditionals to show and hide the appropriate fields
for each type:

</marker>
<rect width="100%" height="100%" fill="white" />
<rect width="100vw" height="100vh" fill="url(#grid)" />
<path d="[path]" marker-end="url(#pos)" fill-rule="evenodd"
 fill="[fill]" stroke="[stroke]" stroke-width="[strokeWidth]" />

</svg>

HTML (continued)

Heterogeneous Collections

<select property="type">
<option value="m">Move</option>
<option value="l">Line</option>
<option value="h">Horizontal Line</option>
<option value="v">Vertical Line</option>
<option value="a">Arc</option>
<option value="s">Smooth Bézier curve</option>
<option value="c">Bézier curve</option>
<option value="t">Smooth Quadratic Bézier</option>
<option value="q">Quadratic Bézier</option>
<option value="z">Close path</option>

</select>

HTML

<label mv-if="type != v and type != z">
X <input type="number" property="x" />

</label>

<label mv-if="type != h and type != z">
Y <input type="number" property="y" />

</label>

HTML

Chapter 8 Case Studies  8.2 Graphics Builders

208 /324

It is important to note that mv-if does not simply modify the HTML, like similarly
namedj features in JS frameworks which treat HTML as purely a view. It actually modifies
the data that expressions see (but not the data that is stored, to avoid data loss).

While this demo highlights many of Mavo’s strengths, it also highlights one of its core
limitations: it cannot handle complex interactions, such as those needed by a visual
graphics editor (e.g. dragging points to change the path).

How to enable such interactions within Mavo is an open question.

For this to be truly useful, it should also support editing existing paths. Then authors
could paste an existing path into the editor, edit it, and copy the result back out. However,
there is no way to write a Formula2 formula that parses (nontrivial) syntax.

End-user parser programming is a whole research area in itself, and is currently out of
scope for Mavo.

This application fits squarely in the category of apps pushing the boundaries of what
Mavo can do to the limit.

It is a visual programming environment for (a subset of) the LOGO programming
language [121], a graphic programming language designed for teaching programming to
children. It lets the user build a LOGO program by manipulating visual controls, displays
a reactive preview on the right, and generates both LOGO code, and JS code (using the
Canvas API). The user can not only tweak the parameters of commands, but rearrange
them and move them in and out of loops via drag & drop.

It is implemented as a collection of commands (instruction) is progressively gener‐
ating JavaScript code through Formula2 expressions, and then rendered in an <iframe>
to reactively draw the graphic on a <canvas> element, automatically re-rendering the
graphic as the commands change.

Limitations 74 %

Direct Manipulation

Editing Existing Paths

Turtle Graphics8.2.2 74.1 %

Chapter 8 Case Studies  8.2 Graphics Builders

209 /324

Figure8.9 A pure Mavo visual programming environment for (a subset of) the LOGO programming language. The live
version can be accessed at mavo.io/demos/turtle. The concept and design was inspired from a demo by Nicky Case at
ncase.me/joy-demo/turtle.

Beyond the novelty of the application itself, it also showcases recursive collections via
the mv-like attribute. Recursive collections are collections that have at least one child
using the same template as the parent. A common use case is threaded discussion com‐
ments, where each post can have any number of replies as children, which can also have
their own replies and so on. In this case instruction is a recursive collection, as some
commands (loops, conditions) can contain other commands.

It also showcases how metaprogramming can work in Mavo HTML, by taking
advantage of existing HTML primitives (<iframe srcdoc>) that allow rendering docu‐
ments from arbitrary strings.

The entire application consists of approximately 200 lines of Mavo HTML, and its
logic needs no JavaScript (beyond the JS code it generates, as described below).

Of the 19 commands in the 1969 design of the LOGO language [121], this applica‐
tion implements 16 (forward, backwards, right, left, pen up, pen down, setpencolor, repeat,
home, setxy, set heading, setpensize, penerase, circle, arc, print). The main commands

Chapter 8 Case Studies  8.2 Graphics Builders

210 /324

https://mavo.io/demos/turtle
https://ncase.me/joy-demo/turtle/

Figure8.10 The app provides both LOGO and JavaScript code.

missing are those related to defining procedures (to ... end and output) and stopping
the program (stop).

This is possibly the weirdest Mavo application ever built: The main program being
authored is a collection of commands (instruction). Each instruction item is a hetero‐
geneous collection with a type property for the type of command, which determines
which other properties are shown.

Architecture 74.5 %

<select property="type">
<option value="move">Move</option>
<option value="turn">Turn</option>
<option value="color">Change color</option>
<option value="up">Put brush up</option>
<option value="down">Put brush down</option>

HTML

Chapter 8 Case Studies  8.2 Graphics Builders

211 /324

http://localhost:8002/phd/chapters/case-studies/#heterogeneous-collections
http://localhost:8002/phd/chapters/case-studies/#heterogeneous-collections
http://localhost:8002/phd/chapters/case-studies/#heterogeneous-collections

Each command has js and logo properties which correspond to fragments of JavaScript
and LOGO code respectively for that particular command.

For example, this is the implementation of the turn command:

This of the color command:

The pen up and down commands have no parameters, and thus only contain the logo and
js properties:

<option value="repeat">Repeat the following</option>
</select>

<!-- Command parameters -->

HTML (continued)

<label mv-if="type = turn">
<input type="number" property="angle" value="20" /> degrees

<select property="direction">
<option value="1">clockwise</option>
<option value="-1">anti-clockwise</option>

</select>

<meta property="logo" content="[if(direction = 1, 'right', 'left')] [angle]" />
<meta property="js" content='ctx.rotate((Math.PI / 180) * [direction] * [angle]);'>

</label>

HTML

<label mv-if="type = 'color'">
to <input type="color" property="color" mv-default="[color.$previous or '#ff0066']" />

<meta property="logo" content="setpencolor [color]" />
<meta property="js" content='ctx.strokeStyle = "[color]";

if (brushDown) ctx.closePath(); ctx.beginPath();'>
</label>

HTML

<div mv-if="type = 'up'">
<meta property="logo" content="penup" />
<meta property="js" content='ctx.closePath(); brushDown = false;'>

</div>

<div mv-if="type = 'down'">
<meta property="logo" content="pendown" />
<meta property="js" content='ctx.beginPath(); brushDown = true;'>

</div>

HTML

Chapter 8 Case Studies  8.2 Graphics Builders

212 /324

The repeat command also includes a nested collection of instruction items:

The repeat command is recursive: it can contain any number of commands, including
other repeat commands. To implement this, we use the mv-like attribute to copy the
template of the parent collection. Collections with mv-like implicitly have mv-initial-
items="0", otherwise this would create an infinite loop.

Outside the root instruction collection, the values of the js and logo properties are
joined to generate the final code (the js_before property contains 5 lines of JavaScript
code to set up the canvas and apply default styles):

These are then displayed in the UI for the user to copy, and for educational purposes. The
js_combined property is also used to generate the preview via a dynamic <iframe>:

<div mv-if="type = 'repeat'">
<label>

<input type="number" property="times" />
times:
<meta property="logo" content='repeat [times] ["["]

[join(instruction.logo, "\\n")]
["]"] ' />
<meta property="js" content='for (let i=0; i<[times]; i++) {

[join(instruction.js, "\\n")]
}'>

</label>

<li property="instruction" mv-multiple mv-like="instruction">

</div>

HTML

<meta property="js_combined" content="[js_before][join(js, '\\n')]" />
<meta property="logo_combined" content="[join(logo, '\\n')]" />

HTML

<iframe srcdoc='
<canvas width="[width]" height="[height]" id="canvas"></canvas>
<script>
try { [js_combined] } catch(e) {}
ctx.drawImage(parent.turtle_image, -25, -25, 50, 50);
</script>' frameborder="0"></iframe>

HTML

Chapter 8 Case Studies  8.2 Graphics Builders

213 /324

Since this is simply an attribute with an expression, the <iframe> automatically re-renders
the graphic if any of the properties change.

A big limitation of this approach is its performance: since an entire webpage (in the
<iframe>) needs to be re-rendered every time the user makes a single change.
Surprisingly, while the user experience is not as smooth as it would be with a custom
implementation, it still very usable (at least in a Chrome browser in 2017), with the main
issue being some flickering when quickly incrementing numbers.

Another is lack of parsing: it would have been useful if this allowed inputting LOGO
code directly and displaying the corresponding visual program, rather than requiring it to
be composed only via the GUI. This is a common limitation across many Mavo apps —
we have seen it before in the SVG path builder example (Section 8.2.1) as well.

Last, lack of direct manipulation: the user cannot interact with the graphic in any way.
While by design this is a graphic generated by a series of commands, it would be useful to
at least be able to pan and zoom via direct manipulation, something the app this is
inspired from (Nicky Case’s Joy of Turtle Demo) does provide.

Even though our driving use cases have been primarily CRUD apps, it was interesting to
see how some Mavo authors pushed the boundaries of what types of applications can be
built. One such category is games, as most games are the polar opposite of CRUD apps,
with far more complex logic and interactions.

This is an implementation of the popular game Concentration (also known as Memory or
Pairs), where the player has to find matching pairs of cards. Its entire implementation is
fewer than 200 lines of Mavo HTML (and no JavaScript), and that includes cus‐
tomizable themes, a timer, a performance rating, and a history of previous gameplays.

This use case argues the point behind the motivation for data actions quite well: the
entire game is fully reactive, with only a single (nontrivial) data action which is triggered

Limitations 77 %

Mavo Games8.3 77.1 %

Memory Game (by Dmitry Sharabin)8.3.1 77.2 %

Chapter 8 Case Studies  8.3 Mavo Games

214 /324

Figure8.11 A clone of the popular Memory game built with Mavo. The live version can be accessed at
dmitrysharabin.github.io/mavo-memory-game.

when a card is clicked. Yet, without that one data action, the game would not be possible
to implement in Mavo.

The application is implemented as six Mavo apps, but architecturally it only needs three,
the rest is done for modularity:

themes: Loads data about the available themes from a JSON file (colors,
icons, etc.).
stats: History of past gameplays, stored in local storage.
The rest describes the game state and is broken down into four apps for modularity
(game, gameState, game-over, (unnamed)), but this state could have been combined
into a single app.

The game is implemented as a dynamic collection of cards (card), shuffling a list of sym‐
bols, with each symbol being present twice, via the formula

Architecture 77.3 %

Chapter 8 Case Studies  8.3 Mavo Games

215 /324

https://dmitrysharabin.github.io/mavo-memory-game/

shuffle(list(symbols, symbols)). While this is a reactive formula, it only gets re-eval‐
uated if symbols changes, which should not happen during gameplay.

CSS classes are used to reflect the state of each card (flipped, matched, incorrect, etc.).
The core game logic is implemented by this long data action, which is triggered when a
card is clicked:

Beyond this, the rest of the game is almost purely reactive.

As described in Chapter 6, data actions were envisioned as means to bridge the small gaps
between purely reactive applications and the reality of what many CRUD applications
needed. The kinds of data actions CRUD applications need rarely exceed one or two
function calls, and as we have seen in our user study, novices struggle with sequences
of actions.

<meta property="first_card" />
<meta property="move" content="0" />
<meta property="won" content="[count(state.$all != 'matched') = 0]" />

<ul id="game-board" mv-list mv-value="shuffle(list(symbols, symbols))">
<li mv-list-item class="card [if(flipped, 'flipped')] [state]"
 mv-action="

// Start game on first move
if(move = 0, set(game_started, true) & set(start_time, time($now, 'ms'))),

if(not flipped, set(move, move + 1)),
set(flipped, true),

if(first_card,
if(card.symbol = first_card.symbol, // Match!

set(state, 'matched') & set(first_card.state, 'matched'),
set(flipped, false) & set(first_card.flipped, false)

) & set(first_card, ''),
set(first_card, card)

),

if(won, add(group(moves: move, stars: rating, time: timer), stats.attempts))
 ">

<meta property="state" />
<meta property="flipped" datatype="boolean" />

HTML

Limitations 78 %

Chapter 8 Case Studies  8.3 Mavo Games

216 /324

The fact that they can be used to implement complex game logic is a testament to their
flexibility, but using them in this way also reveals their weaknesses, since they were not
envisioned as a general purpose programming language.

Namely, the lack of abstractions becomes painful the more complex the logic gets. The
large data action above could be a lot easier to comprehend if it could be broken down
into smaller, more manageable pieces.

This is an issue we will also see in the next game.

Figure8.12 A clone of the popular Wordle game built with Mavo. The live version can be accessed at
dmitrysharabin.github.io/mavo-wordle.

This is a clone of the popular Wordle game and needs fewer than 200 lines of Mavo
HTML (and no JavaScript).

Mavordle consists of several Mavo apps, each representing a different part of the game:

Mavordle (Wordle Clone) (by Dmitry Sharabin)8.3.2 78.1 %

Architecture 78.2 %

Chapter 8 Case Studies  8.3 Mavo Games

217 /324

https://dmitrysharabin.github.io/mavo-wordle

Three apps (keyboard, possible_words, common_words) load data from JSON files
that is then used by the rest of the code.
An app for the statistics of past gameplays (statistics), whose data is stored in
local storage.
The remaining three Mavo apps (game, mode, popup) implement the core game logic
and were implemented as separate apps for modularity — in terms of functionality,
they could have been combined into a single app.

The gameplay is implemented as data actions for the onscreen keyboard buttons, which
update state as needed.

The keyboard is implemented as a collection of letters, each with a data action that
appends it to the current guess and a class that styles them based on their status:

Most of the logic is on the Enter key, which has two versions, one for when the guess is
incomplete (fewer than five letters), and one for when the guess is complete:

<button mv-list-item class="[status]" style="--row: [row]"
 mv-action="if(guess_length < 5,
 add(key, guess_letters) & add(count(guess_letters) - 1, used_indices)
)">

<meta property="used_indices" mv-list mv-initial-items="0" />
<meta property="used" mv-value="contains(join(guesses), key)" />
<meta property="solution_index" mv-value="index_of(solution, key)" />
<meta property="status" mv-value="

if(solution_index = -1, 'absent',
if(contains(used_indices, solution_index), 'correct', 'elsewhere')

)" />
</button>

HTML

<button id="enter" style="--row: 3; --column: 1"
 mv-if="0 < guess_length < 5"
 mv-action="toast('Not enough letters')">Enter</button>

<button id="enter" style="--row: 3; --column: 1"
 mv-if="guess_length = 5" mv-action="

if(guess_valid,
if(guess = solution, set(result, 'won'), setif(attempt = 6, result, 'lost'))
& add(guess, guesses) & clear(guess_letters),
toast('Not in word list')

),

if(result = lost, toast(solution)),

if(result,
add(group('guess': if(result = won, count(guesses), 0)), statistics.games)
& set(statistics.current_streak, if(result = won, statistics.current_streak + 1, 0))
& set(statistics, group(

HTML

Chapter 8 Case Studies  8.3 Mavo Games

218 /324

Gameplay needs to happen via the onscreen keyboard — pressing the corresponding let‐
ters on the physical keyboard does not work. This is because Mavo does not provide a way
to trigger actions based on key presses. This could be added, but it would require a few
lines of JavaScript:

solution: solution,
guesses: guesses,
states: used_letters.state,
result: result,
max_streak: max(statistics.current_streak, statistics.max_streak),
date: $today

)
)

">Enter</button>

HTML (continued)

Limitations 79.2 %

document.addEventListener("keyup", event => {
let key = document.getElementById("key-" + evt.key.toLowerCase());
if (key) {

event.preventDefault();
key.click();

}
});

JS

Chapter 8 Case Studies  8.3 Mavo Games

219 /324

 14,147 words (41 min read)

Figure9.1 A set of example Lifesheets applications, tracking various aspects of life. From left to right: Work time tracker,
migraine tracker, bilingual child vocabulary tracker, blood pressure tracker.

While Mavo significantly lowers the barrier for developing full-stack data-driven
web applications, writing HTML still requires a certain nontrivial level of technical
proficiency. Many end-users struggle to sufficiently conform to any type of syntax, even as
permissive as HTML’s.

One of the advantages of extending HTML syntax, is that any sufficiently generic
WYSIWYG HTML editor can be used to create Mavo applications. However, while that

CHAPTER 9

Lifesheets: End-User
Development of Quantified
Self Applications

Introduction & Background9.1 79.6 %

220 /324

would remove the syntactic pitfalls, a visual interface has tremendous potential to make
the concepts easier to use and understand as well.

Some work in this direction explored adapting a general purpose WYSIWYG editor
for HTML to support Mavo with moderately positive results [122].

I hypothesized that perhaps a domain-specific visual application builder could be even
more effective, as narrowing down the set of potential use cases also narrows down the
design space, and allows for certain assumptions to be made (e.g. about the data model or
desired capabilities). This facilitates rapid iteration, and provides increased value per unit
of user effort (Section 1.4.2).

Many domains could have been chosen for this, but personal tracking (aka Quantified
Self) has several attributes that make it particularly well suited for this exploration:

It has broad appeal to a majority of the population
The use cases are not abstract but concrete and relatable,
The data models involved tend to be shallow but not entirely flat,
Data ownership and privacy are important concerns
It makes use of all core Mavo primitives: data editing, lightweight computation
(Formula²), Data Update Actions, and unified remote data storage (Madata).

Furthermore, it is yet another domain where user dissatisfaction with available tools is
well documented, and validated once more by our needfinding study.

Many people wish to record data about themselves or loved ones. Motivations vary: self-
awareness, preservation of memories, comparison to others, self-discipline, and many oth‐
ers [123, 124]. Mainstream applications are not flexible enough to cater to users’ diverse
needs, and raise concerns about privacy, data ownership, and lock-in to proprietary sys‐
tems [125–128]. As a result, people regularly resort to spreadsheets, unstructured docu‐
ments, or even handwriting [129, 130]. Tracking involves high amounts of friction, so
data is lost. Often, the process is abandoned altogether [131–133].

We present Lifesheets 1, a domain-specific End-User Programming (EUP) system
empowering end-users to create their own, custom tracking applications. Lifesheets bridges
a gap between generic EUP tools and customizable tracking applications: Being domain-
specific allows it to produce higher fidelity applications with less effort than generic no-
code tools (low threshold), while being designed as an end-user programming tool rather

Motivation & Core Contributions9.1.1 79.8 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.1 Introduction & Background

221 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-1

than a customizable tracker allows it to be more flexible and powerful than existing
trackers (high ceiling).

We focus on manual tracking in this initial work; but plan to support semi-automated
tracking [134] at a later stage. Manual tracking has been shown to improve awareness and
facilitate reflection [135–137], but imposes a high capture burden, which Lifesheets
reduces through programmable shortcuts, defaults, and input affordances.

Creating these applications requires no more, and often significantly less, technical skill
than using spreadsheets. The resulting applications are far easier to use than spreadsheets
and much preferred by our user study subjects: Using a standardized SUS questionnaire
[115], participants rated the usability of both creating and using Lifesheets as vastly than
a spreadsheet.

Lifesheets are private and portable. Each is represented as a simple Mavo HTML
document, interpreted in the browser. Both the app itself, and its tracked data are stored
in the user’s own storage space on a cloud service such as GitHub or Dropbox. GitHub is
used by default, but any Madata backend can be used, as long as it supports the capabili‐
ties necessary (auth, write, upload, host). Data is private to the user, and there is no
dependence on any specific platform: if their chosen backend goes away, they can simply
move their files to another cloud service and continue using all their applications. The
HTML representation also allows power users to customize each lifesheet further with
their own HTML or CSS.

Spreadsheets are an obvious default tool for tracking, thanks to their tabular structure.
But we identify several limitations of spreadsheets: the visual layout of entries, laborious
data capture, and challenges in authoring suitable calculations—especially over dates and
times. We then show how to overcome these limitations through our design of Lifesheets.

Beyond customization and input flexibility, Lifesheets increases efficiency in two ways:
both by lowering the capture burden per entry, but also the time needed to begin tracking a
new thing. As the Greeks say, “The beginning is half of every action”: if starting requires
copious amounts of app store research [125] or tedious application building, it requires
very high motivation for tracking to commence. Until then, data is lost.

We refer to the system as Lifesheets (capitalized) and to the apps created by it as lifesheet(s)
1

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.1 Introduction & Background

222 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-1

Beyond our initial goal of studying whether end-users can understand Mavo concepts, or
Formula² expressions, and to gauge their reaction to an application using the Madata
approach to data storage, this work also includes several other contributions to the
Quantified Self and End-User Programming literature:

1. We provide numerous insights regarding people’s tracking habits through a
survey of 85 participants. A focus is parents tracking data about their child(ren)’s
development, a type of personal tracking underexplored in the Personal Informatics
literature.

2. We identify numerous obstacles to the use of existing tools for personal tracking
3. We design and implement Lifesheets, a serverless application builder aimed at

overcoming these obstacles
4. We evaluate Lifesheets for flexibility by implementing dozens of use cases collected

via our needfinding survey, and for learnability and efficiency through a lab study of
10 participants.

5. We outline a machine-readable description of tracking applications and their
tracked data. Using these, other interoperable systems could allow users to further
explore and correlate their data.

The Greeks say “The beginning is half of every action”. If beginning to track requires
copious amounts of app store research or tedious application building, it requires very
high motivation for tracking to commence. Until then, data is lost. While it is established
in the literature that efficiency in using a tracking application is important for users to
stick with it [123, 124], we hypothesized that lowering the barrier for beginning the
tracking process is equally or more important. If tracking does not commence, there is
nothing to stick to. Our needfinding survey confirmed this.

We envision a future where creating a tailored, efficient, personalized tracker that
evolves together with the data and adapts to life or goal changes, yet is as high fidelity as
commercial applications, can be as easy as creating a document or spreadsheet. In this
vision of the future, marginalized groups can take tracking their data into their own
hands, rather than depending on third parties who don’t understand them [138] and don’t
necessarily have their best interests in mind.

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.2 Related Work

223 /324

To our knowledge, our work is the first that bridges these two main research areas: (1)
Personal Informatics, and (2) End-User Programming.

Several studies have explored user needs related to personal tracking. Recurring themes
were input flexibility [129, 130, 139–141], style/layout customization [127, 129, 130, 139,
140, 142], and privacy [125–128, 130].

Co-design has been used to explore tracking needs, mainly within narrow domains
such as food tracking [140] or specific subsets of users, such as youth [127]. This body of
work provides additional motivation, as it demonstrates that even within these narrow
scopes, user needs are still widely varied. However, this body of work does not answer the
question of how these varied tracking applications would be built.

Previous work has found several usability issues and other barriers with existing tracking
tools [123, 126, 138]. Relevant to manual tracking are: (1) low efficiency and usability of
data entry [123, 126, 130], (2) data reflection not meeting user needs [123, 126], (3) lack
of input flexibility [140], (4) insufficient customization [130], (5) inconvenience of data
export [126], (6) privacy concerns [125–128], (7) biases inherent in the design of widely
available tools that hamper suitability [138, 143], (8) difficulty in finding a suitable appli‐
cation [125]. We will see that Lifesheets effectively addresses all these issues.

Some attempts to address these issues resulted in highly customizable tracking
applications. The only general purpose research system (to our knowledge) is
OmniTrack [141]. Other research systems that focus on customizability, such as [128,
139] focus on very narrow tracking domains or use cases (e.g. multiple sclerosis care).

Beyond research systems, there is a variety of commercial applications that attempt to
solve this problem, such as Bearable [144], Exist.io [145], DoEntry [146], Nomie [147],
or KeepTrack [148].

Related Work9.2
80.5 %

Personal Informatics9.2.1

Needfinding

Pain Points 80.7 %

Ultra-Customizable Trackers 80.8 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.2 Related Work

224 /324

http://exist.io/

All of these systems are essentially highly configurable applications, not empowering
users to create standalone applications. They require the system that created them to work;
they cannot function independently of it, nor outlive it.

There is no computation, nor any extension points to extend the ceiling. Settings accept
predefined static values, not formulas.

The subject of personal tracking is not necessarily oneself, but often other loved ones;
Parental record-keeping is a subset of personal informatics that is often studied separately.
It is further broken down into safety monitoring through sensors [149, 150], and manual
record-keeping to preserve memories, detect developmental delays, or as requested by a
pediatrician [151–154].

Although parental record-keeping shares a lot with self-tracking, these use cases are
distinct in several ways. One big difference is posterity: data needs to be preserved for
decades, making data ownership and portability critical.

There is a large body of work around empowering end-users to create their own read-
write data-driven applications, discussed at length in Chapter 2. It could be argued that
self-tracking applications are merely a special case that existing EUP tools can already
accommodate. Our work adds to the small body of work around domain-specific EUP sys‐
tems (e.g. [155–157]) and demonstrates that there are enough commonalities between the
diverse set of manual tracking use cases — even after including those outside the
common health & wellness domain — that a domain-specific EUP system can signifi‐
cantly smoothen the ease-of-use vs. power curve. We identify significant commonalities
in personal tracking use cases that allow us to specialize end-user programming to the per‐
sonal tracking task; this specialization makes Lifesheets much simpler and more efficient
than a general purpose no-code tool. It also lets us create apps that are highly optimized
for efficient personal tracking data entry, which is critical. If entering data takes too long,
users are less likely to stick with it [124].

In addition to the research literature, we also investigated several popular commercial no-
code tools such as Airtable [158], Glide [159], and Coda [31] to compare them with
Lifesheets. These tools utilize a spreadsheet-like interface and improve on many

Parental Tracking 80.9 %

End-user Programming (EUP) Systems9.2.2 81 %

Commercial No-code Tools 81.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.2 Related Work

225 /324

spreadsheet issues (e.g. named references, chart chooser interfaces, simple default values).
However, they still fall short in many areas that are relevant to personal tracking (namely
temporal calculations and charting, non-tabular schemas, reactive defaults, actions
for automation).

Temporal calculations are easier in some of these tools, but still challenging. Many
non-tabular schemas are still hard (e.g. global variables, multivalued properties).

The Mavo suite of technologies is particularly well-suited to tracking: Managing collec‐
tions of data (just like tracking entries) is one of its primitives. It facilitates UI customiza‐
tion and reactive defaults for efficient data entry. Its expression language, Formula², is
novice-friendly by design and well-suited to data aggregation and temporal calculations.
Thanks to Madata, data can be stored independently of the application, in a portable for‐
mat, and its actions can create data entry shortcuts with a one line expression, reducing
capture burden.

However, creating a custom tracker with fidelity comparable to commercial
applications still requires a sophisticated understanding of Mavo itself, HTML, CSS, not
to mention user interface design skills. Lifesheets wraps Mavo and exposes a higher level
abstraction, making it approachable to users who are far less technical than its original
target audience.

The Lifesheets GUI does expose several lightly abstracted Mavo concepts to end-users
(e.g. expressions, properties, simple collections, actions, data and logic separation). This
highlights another contribution of this work: it is one of the first to study exposing Mavo
concepts to end-users who cannot necessarily write HTML.

Additionally, the generated Mavo HTML is visible and editable in various places in
the Lifesheets GUI as an escape hatch for customization, to further extend the ceiling,
while maintaining the low threshold of a GUI (see Section 1.4.1). This smoothens out a
common usability cliff of no-code tools: once use cases outgrow the GUI, users are typi‐
cally directed to scripting languages, which are much harder to learn [11].

Mavo 81.3 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.3 Needfinding Survey Summary

226 /324

We began our work with a survey of 85 participants, recruited through a call for partici‐
pation on social media and local parent groups in July 2022. The goals of the survey were
threefold: (a) collect outlines of tracking use cases (tracked data schemas, reflection, etc.)
in bulk, to be used for evaluating the flexibility of Lifesheets, (b) recruit participants for
our later user study, (c) collect data to guide the design (complementing existing
needfinding literature),

While needfinding is not a primary focus of this work, there are a few novel aspects of
this survey compared to existing needfinding work like [125, 129, 130, 142]: (1)
Participants in similar studies often forget what they track [140]. To mitigate this, we
used a modified version of web probing [160]: we primed participants with a list of 26
(+13 more for parents) common tracking cases, that they could complete in with their
own custom cases, using 5 (+4 more for parental tracking) open text fields — a format
shown to increase recall [161, 162]). (2) Most existing work studies things actually
tracked; we also study things that people want to track, but don’t. (3) We compare self-
tracking and parental record-keeping across the same population. We intentionally did not
select based on parental status, nor made any special mention of it in our recruitment
materials to study it as a special case of personal tracking of self-trackers who also happen
to be parents.

To keep the focus on the main contributions, we have placed the bulk of background
details and survey findings in the appendix (Appendix A). Here, we focus on observations
that specifically demonstrate the general need for programmable end-user tracking apps,
surface particular requirements that our design should meet, or relate to the novel aspects
of this survey mentioned above.

Participants tracked a median of 7 things for themselves (no difference by parental sta‐
tus), but parents additionally tracked a median of 4 things about their children. While
automatic tracking (e.g. step count) was common, more than half of self-tracking use
cases and nearly all parental tracking was by manual entry (indicating perhaps that
despite the rise of “baby wearables”[149, 150], parental tracking largely remains a manual
labor of love).

Needfinding Survey Summary9.3
81.5 %

Overview9.3.1 81.8 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.3 Needfinding Survey Summary

227 /324

Popularity of tracking use cases largely validates existing results, but our methodology
uncovered a few common use cases that are not present in existing literature. Most
notably, sexual activity is the 9th most popular tracking use case (being tracked by 22.35%
of participants — equally across genders), despite barely appearing in other studies.

49/85 participants provided additional details on their (manual) tracking methods — a
total of 217 tracking instances, 168 of which contained enough details to be included in
the Tracking Use Cases dataset that was later used to evaluate Lifesheets for flexibility.
36/49 used a generic tool (handwriting, spreadsheets or note app) for at least one use
case. Only half of the things tracked (37.5% for parental tracking) were tracked using a
dedicated (web) application. The rest were mostly tracked in spreadsheets, and digital or
paper documents.

Percentage of reasons

Not enough motivation to
even look into how to track it

Lack of discipline to record
the data

Too much data to record
task seems overwhelming

Lack of suitable tools

Other

0.00% 10.00% 20.00% 30.00% 40.00%

Adult self-tracking Parental tracking

Reasons for not tracking desired things

Figure9.2 Reasons given for not tracking the things participants have wanted to track, broken down by self-tracking use
cases, and parental tracking use cases.

Use Case Details9.3.2

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.3 Needfinding Survey Summary

228 /324

Lack of suitable tools was by far the most common reason for not tracking desired
things (Figure 9.2), with 33/49 participants reporting this as a reason that they don’t track
things they want to track.

Participants rated the self-tracking tools they use as satisfactory in 64.1% of cases and as
unsatisfactory in 18.3%. Tools for parental tracking were associated with lower satisfac‐
tion (52.6%), with 18.4% of tools rated as unsatisfactory.

Out of 76 complaints people had with the tools they were using, data entry efficiency
was the most common (17 complaints). P47 wants shortcuts and presets: “having presets
for exercise types could be useful to make adding records faster, limiting clicks, which would in
turn make it less of a hassle to record.” P71 finds using a spreadsheet tedious, even with data
validation: “It’s tedious to enter data, especially on a phone. I have to enter the date manually, no
defaults. Even in the fields where I have dropdowns it’s still tedious to fill them in.”.

The second most common issue was mismatch between the tracked data schema and
their needs (10 complaints). Notably, P81 went into detail on how they use their men‐
strual tracker to track sexual activity: ‘‘In addition to what I hate about Flo in general, it’s not
really a sex tracker, so I have to encode what I actually want to record into its only two modes for
recording sex: protected and unprotected. So I have the convention that if penetration happened I
log it as “unprotected” otherwise I log it as “protected”. But in actuality, both are protected,
because I have an IUD! I’d also like to log things like how good it was, whether we both had an
orgasm etc.’’

Other common complaints were insufficient automation (9), the tool does not calculate
desired insights (8), no reminders (5), lack of structured data (4), lack of customization
(4), and privacy concerns (4). P23 stopped tracking details about their period due to pri‐
vacy concerns: “One day I had an out of ordinary heavy flow which I tracked in the app. Later
that day I saw a targeted ad that I’d never seen before (or since) so I concluded my data had been
shared immediately. Since then I’ve only entered start date and have not given detailed info to
that app. An app selling such personal data was an affront.”

Satisfaction and Complaints9.3.3 82 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

229 /324

Figure9.3 The Lifesheets editor, in Design view, with a property selected (diastolic), shown in a browser window.
Temporal and data privacy settings are found in the "Main info" panel on the top right.

Motivated and informed by our preliminary study and the needs and issues identified in
the literature, we designed Lifesheets (Figure 9.3). In this section, we describe Lifesheets’
novel architecture and its main concepts. A functional prototype can be found online
at lifesheets.app.

Lifesheets introduces a novel “serverless” end-user programming ecosystem in which the
application is built by the Lifesheets editor but stored in the user’s own cloud storage
space. Our prototype only supports GitHub, but other services are straightforward: all
that is needed is file storage, static file hosting, and a Web API to control both program‐
matically. We started from GitHub as it meets all three requirements, simplifying the
process. However, it is entirely possible in the future to support using separate services for
file storage and web hosting, which would expand the range of services that can be used.

Lifesheets9.4
82.2 %

Architecture9.4.1 82.3 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

230 /324

https://lifesheets.app/

A major advantage of this type of decentralized design is increased privacy and portabil‐
ity: In contrast to the current ecosystem, in which users need to trust each tracking appli‐
cation individually to preserve their privacy, our approach minimizes the trust surface to a
single cloud storage provider. Cloud storage providers typically build their reputation on
security and privacy, but if trust becomes compromised, copying files to another provider
is all it takes to migrate. Although the benefits of this architecture extend beyond tracking
applications, they are especially important for tracking, as data preservation is a major
need — and the main motivation for parental tracking according to our survey, com‐
prising almost 40% of provided reasons (Chapter 9). In comparison, all other systems we
reviewed store data opaquely in proprietary systems that can disappear at any time.

Lifesheets are standalone web applications consisting of a single index.html file, and a
style.css file used for styling. They are Mavo [11] applications, and thus need no custom
JavaScript code to function. They work on a phone, tablet or computer, and their UI
adapts to available space. These web applications are PWAs 2 and thus can be installed on
a phone just like a native application. Their code (HTML and CSS) is generated with
readability in mind, to facilitate both learning Mavo, and tinkerability by power users.

Each lifesheet includes its own authentication UI (provided by Madata), which is sepa‐
rate from that of the Lifesheets editor. Lifesheets have two data privacy modes: Public
and Private. In both cases, only the owner (and anyone they authorize) can edit data, but
in the latter, only the owner can read it as well.

Data tracked with a lifesheet is stored separately from the application, in a cloud loca‐
tion of the user’s choice, or locally in the browser. By default, this is a JSON file in the
same directory as the web application (not deployed to the web if the lifesheet is private).
The data location is exposed on the Lifesheet editor UI, so that users know where to find
their stored data at any given point.

In fact, Lifesheets is the first GUI application to use Madata (Chapter 5) in an end-
user facing way, and also the first to offer user-choice on two levels: the location of the
application itself, and the location of the tracked data, which can be different. This is a
markedly different model than the more common “data export” feature: this data file is
not an export, but the primary source of truth. Power users could even write custom

Anatomy of a Lifesheet9.4.2 82.5 %

en.wikipedia.org/wiki/Progressive_web_app
2

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

231 /324

http://localhost:8002/phd/chapters/lifesheets/#fig-motivations
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-2
https://en.wikipedia.org/wiki/Progressive_web_app
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-2

tools to read it or even modify it, and their lifesheet would update to incorporate
their edits.

The data model of each lifesheet consists of an array of objects called entries, containing
the main tracked data. Each entry object includes temporal properties (discussed below),
as well as arbitrary tracked data. There may also be root-level data, useful for settings, con‐
stants etc.

Fields are the basic building blocks of a lifesheet.

There are four kinds of fields, with distinct purposes:

1. Properties hold stored data and are editable. There are several types of property
fields, providing affordances commonly needed in tracking applications [141] (text,
number, options, toggles, media, date, time), as well as custom: an arbitrary fragment
of Mavo HTML.

Each property can be single-valued (most common), or a collection, with controls to
add, delete, and reorder items (for an example, see the list of words in each entry of
Figure 9.10).

2. Expressions display reactive calculations, akin to spreadsheet formulas.
3. Actions are buttons that can automate data modifications, e.g. add entries with

pre-filled values, set values on certain entries, and/or delete certain entries or ele‐
ments of any named collection. Data can be static values (e.g. 2) or dynamic expres‐
sions (e.g. time($now)). Every lifesheet starts with one general action: the button
that adds new entries.

4. Spacers are no-op fields that facilitate layout.

Properties and (optionally) expressions are named so so they could be referred in expres‐
sions and other places of the editor interface.

Fields may belong to entries and be repeated with them (Entry fields) or to the lifesheet
itself (General fields). While most properties are Entry fields, General properties can be
useful for global parameters (e.g. hourly rate, child’s name and birthday, currency, etc.).
Entry expressions are useful for reflection on the data of that particular entry, or how it
relates to the previous entry (e.g. time since previous migraine), while general expressions

Data Model9.4.3 82.9 %

Fields9.4.4

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

232 /324

are useful for aggregate calculations or calculations on a specific type of entry
(e.g. first/last).

One of the major ways that Lifesheets simplifies tracker construction is its abstractions
over temporal data handling, which (as our user study shows) is still difficult with most
general-purpose EUP tools.

Figure9.4 The predefined temporal fields generated with the selection of each temporal category. From left to right: (a)
Single Date (b) Single date & time (c) Range of dates (d) Range of dates & times

Nearly all tracking use cases involve tracking temporal data alongside other variables (the
few that don’t are out of scope for this work). However, not all use cases require the same
type or granularity of temporal data. We identified four main categories, depending on (a)
whether times are needed and (b) whether entries have duration.

Single date Each entry includes only a date. These are used for events where time is
not relevant, such as very infrequent events. Examples: Child milestones, Medical
exam results, Monthly injections, Expenses.
Single date & time Used for events that may be tracked multiple times a day but
have no duration (or it is not relevant). Examples: Cigarettes smoked, Basal body
temperature.
Range of dates Examples: Travel.
Range of dates & times Examples: Sleep, Nursing sessions, Migraines.

Lifesheets supports all four, through high-level Date & Time settings (Figure 9.3).
Choosing one of these categories automatically creates the right fields (Figure 9.4, which

Coping with Time9.4.5 83.1 %

Types of Time 83.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

233 /324

include input affordances, computation, dynamic defaults (Figure 9.6) etc. Here are some
example entries for each category with no other fields:

The same use case could belong to a different temporal category depending on user needs:

Tracking blood sugar would fall under “Single date” for most people who check it
once or twice a year, but would be “Date & Time” for diabetes patients that mea‐
sure it several times a day. 3.
Menstruation may fall under “Range of dates” for people who only wish to record
start and end dates, but could also be “Single date” for people who wish to record
flow or other symptoms by day (in that case, expressions would calculate what the
start and end is, or it could be marked explicitly).

To facilitate efficient tracker creation, in addition to the temporal predefined fields dis‐
cussed above, every lifesheet also begins with:

A notes multiline text property (Entry field), to capture freeform metadata about
the entry. Formatting can be optionally enabled (through Markdown or a
WYSIWYG editor), and the field can be deleted if notes are not desirable.
An action (General field) for adding new entries. This can also be optionally deleted
and replaced with more specific actions (e.g. that prefill properties with certain val‐
ues, see Figure 9.12).

Other Predefined Fields 83.5 %

mayoclinic.org/diseases-conditions/diabetes/in-depth/blood-sugar/art-20046628
3

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

234 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-3
https://www.mayoclinic.org/diseases-conditions/diabetes/in-depth/blood-sugar/art-20046628
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-3

This also means that for the simplest of tracking cases which are basically a diary with
temporal info, a blank lifesheet, possibly with 1-2 clicks to set the temporal category, is all
that is needed.

Default values play an important role in tracking applications, as they can often save sig‐
nificant time in data entry. Lifesheets takes advantage of Mavo’s reactive defaults (Section
3.3.6) to provide “smart” defaults that are computed based on other properties in the same
entry, or even across entries, and update reactively as the data changes.

Figure9.6 Temporal properties come with several suitable defaults to facilitate efficient data entry.

But it goes one step further than simply exposing mv-default via a GUI, and provides
default default values, i.e. presets for commonly needed defaults, in line with our design
goal that common use cases should not require typing expressions manually.

All properties include certain presets (e.g. value of the same field in the previous or
next entry). In addition to their “default default” values, temporal fields come with addi‐
tional default value presets such as “day after”, or “start of the hour”, to facilitate common
tracking use cases. (Figure 9.6)).

Moreover, these presets serve double duty: the expressions that generate each default
are displayed next ot it to facilitate tinkering and to gradually teach users Formula2 syntax.

Static & Dynamic Default Values9.4.6 83.6 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

235 /324

We saw earlier that style customization is one of the most common needs around track‐
ing. Yet neither dedicated tracking applications nor most EUP tools afford much in the
way of style customization.

In designing UIs for style customization, there is always the tension between simplicity
and power. Too much control can give users too much rope to hang themselves, resulting
in UI clutter. Too little and users are unhappy with the result. We incorporated a few basic
settings to personalize each lifesheet (Figure 9.3):

While simple, they allow for producing lifesheets that look fairly diverse (Figure 9.1,
Figure 9.12, Figure 9.10, Figure 9.14). We also allow custom CSS for more extensive per‐
sonalization — originally by power users, but we could easily see an ecosystem of lifesheet
themes that non technical users can adopt emerging.

In terms of layout, custom applications include optimized layouts that take better advan‐
tage of space, and making each entry easier to process, while spreadsheets and most data-
focused “no-code” tools are still bound by the limitations of the classic rectangular grid of
spreadsheets, or close to it.

A major limitation of spreadsheets compared to custom applications is layout. The rec‐
tangular grid rules. Grids facilitate vertical scanning of property values across entries, but
have several issues when used for arbitrary data. Each “record” generally occupies only a
single row, which for large records might not even fit on the screen. Long values stretch
the entire row and/or column. Sparingly used optional fields still occupy an entire col‐
umn. If users manually violate the grid (e.g. using two rows per record, merging cells,
etc.), formula evaluation becomes much harder, and navigation between records functions
poorly. In contrast, custom applications often apply far more variability in their layout,
taking better advantage of space, highlighting relationships between different fields of a
record, and overall making the record easier to understand.

We wanted to bring some of that flexibility to the design of Lifesheets. But in
designing any visual application builder, there is always tension around how much control
to provide on the resulting layout. Too much control can give users too much rope to
hang themselves, resulting in UI clutter. Too little, and users are unhappy with the result.

Style Customization9.4.7
83.8 %

Color

Layout 83.9 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

236 /324

When laying out a collection of records, there is always the tension between horizontal
(grid-based) vs vertical (top-down, “cards”) layouts. Top-down layouts work really well for
longform data, but waste space for shorter data. Grid-based layouts have the issues dis‐
cussed above. It appears that the optimal solution may be a hybrid form [32] where cer‐
tain fields are laid out left to right, and others top-down. Furthermore, we wanted to sup‐
port fields that could be next to each other and read as one logical unit, but also a more
tabular layout, for use cases that require it.

The solution we chose was to support three appearance settings: “Normal”, “Stretch”, or
“Own line” which could be applied on any field, as well as size constraints (min/max
width and height). “Normal” (the default appearance) fields are sized based on their con‐
tents, which allows them to flow next to each other, and be perceived as one logical unit.
“Own line” fields occupy an entire line, which is suitable for longform content. After allo‐
cating minimum required space on each line, any remaining space on the same line is dis‐
tributed equally to fields with an Appearance setting of “Stretch”. “Stretch” is the default
appearance for Spacer Fields whose most common use is to align fields on the two sides of
the same line. Using only these three appearance settings and size constraints, users can
create layouts that range from tabular, top to bottom, or anything in between.

Charts and summary tables are an essential part of the Reflection stage of any personal
tracking activity [123]. When designing Lifesheets we looked at the kinds of charts and
tables existing tracking applications provided, and designed a minimalistic chart chooser
[163] driven by them.

Lifesheets charts are generated based on three parameters: the field we are plotting
(properties or named expressions), how to group it (either by temporal factors such as day
or month, or distinct values of another named field), and how to combine values within
the same group (e.g. count, sum, average, etc). Multiple aggregates over the same para‐
meter can co-exist in the same chart.

To facilitate early detection of slips and aid the user rapidly converge to the desired
goal, the default chart type is “table”. This forces users to verify they have the correct data
before moving on to a more complex presentation such as a bar chart or a pie chart.

Charts9.4.8 84.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

237 /324

To support including dynamic charts in Mavo applications (even outside Lifesheets), we
implemented an <h-chart> web component 4, which accepts the data to be charted as a
child <table> element and the plotting parameters as HTML attributes.

Figure9.7 The chart chooser interface (not shown: common controls for dimensions, visibility, appearance)

Expressions and Actions directly map to the same concepts in Mavo, except they are
partly generated via GUIs.

Relationship to Mavo Concepts9.4.9 84.5 %

projects.verou.me/h-chart
4

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

238 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-4
https://projects.verou.me/h-chart
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-4

Properties Expressions

Mavo:
Computed
Properties

Lifesheets:
Named

Expressions

Figure9.8 Mavo concepts are largely exposed directly via the Lifesheets GUI, with one exception: computed properties.

Figure9.9 Expression authoring conveniences. From left to right: (a) The text field used in places where expressions are
allowed in three states: literal text, invalid expression, valid expression (b) The Quick Add widgets with the Duration widget
expanded. Top: entry, bottom: general. (c) The docs browser which opens automatically when an expression is focused, on a
suitable entry based on the expression content and caret position.

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

239 /324

Expressions are allowed in almost any textual setting (e.g. prefix, suffix, visible, default
value, etc).

To indicate this, a text field is used with an icon on the right that is T in literal text
mode, or fx in expression mode (Figure 9.9) and can be clicked to toggle between modes.
Expression mode includes basic syntax checking, error reporting, and parenthesis

balancing. There is also a sidebar widget (Figure 9.9) for browsing Mavo expression
documentation that expands every time such an expression field is focused.

However, our goal is that users should not need to type expressions at all for the kinds
of calculations that are common in tracking applications. There is a series of widgets that
generate function calls for common calculations, such as durations (Figure 9.9), aggre‐
gates, or conditionals. The widget allows specifying all parameters through form controls,
and displays the resulting expression fragment, to teach the user how to write expressions.

These function calls can be tweaked, then inserted in the main expression field, and
then tweaked further. Unfortunately, this is currently only available for the main expres‐
sion in Expression fields, and not anywhere an expression can be written.

The Lifesheets editor offers two view modes: Design (default) and Preview. The Design
mode allows users to click to click on a field to open its configuration editor, as well as
edit the main app info in a WYSIWYG way. The Preview mode allows users to use the
app they are creating, verify that expressions, actions, and charts work as expected etc. The
modes are necessary to differentiate what happens when a user clicks on a field—are they
configuring that field or editing its value?

Tinkerability is important in the design of any creative interface [164], and crucial for
end-user programmers [165] who are less aware of what exactly they are doing. In
Lifesheets, most edits to the application schema are non-destructive: users can create a

Expression Authoring9.4.10
84.7 %

Viewing Modes9.4.11 85 %

Supporting Tinkering and Iteration9.4.12 85.1 %

projects.verou.me/h-chart
4

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.4 Lifesheets

240 /324

https://projects.verou.me/h-chart
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-4

prototype of their tracking application, use it to store data, then return to the Lifesheets
editor later and evolve it based on changes to their needs or new insights. If the author
removes a field that has been used to enter data, its data is preserved in case the user
decides to bring it back. This is also why range start date and time are named date and
time, instead of start_date and start_time: to support experimentation with different
temporal categories.

Currently, all existing tracking applications define their own tracked ad hoc data schemas.
Even when data export is supported, there is little non-programmer users can do with this
data. To our knowledge, there is no standard data schema for this type of data, so that dif‐
ferent applications can interoperate.

We believe that there is value in converging towards a data schema that all these dif‐
ferent applications can use. JSON is a good language for defining this, due to its popu‐
larity as a data interchange format and its support for nested data structures (unlike e.g.
CSV). For example, one can imagine a user choosing to use one tracking application for
its superior data entry capabilities, another for its data analysis capabilities, and a third
one for correlations across data tracked by multiple different applications. Since
Lifesheets had to be designed to accommodate a very wide variety of tracking use cases, a
secondary contribution of this work is to pave the way towards such a standard schema
for tracking data.

Even without a description of the tracking use case, the data Lifesheets produces has
several commonalities that would allow a third-party application to process them mean‐
ingfully: all data includes a root object, with an entry key that includes an array of
entries, as well as any global properties. Entries are objects, whose values are primitives or
arrays of primitives. Temporal fields (date, time, end_date, end_time) are standardized
across all use cases and their values are the same format (ISO 8601 5).

Lifesheets also produces a JSON description of the tracker, which can be used by
third party apps to make sense of the rest of the data properties that are not shared
across lifesheets.

Standardizing Tracked Data9.5 85.2 %

iso.org/standard/70907.html
5

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.5 Standardizing Tracked Data

241 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-5
https://www.iso.org/standard/70907.html
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-5

The data from each tracker is stored as a JSON file in the user’s chosen file space.

The general shape of all tracked data is a root object, with an “entry” key which con‐
tains the list of entries in an array, plus keys for any root properties, if any are present.

Entries are represented by JSON objects. Properties are represented by object keys with
primitive values, except multi-valued properties which are stored as arrays of primitives.
Expressions are not stored, even if they are named. ISO 8601[85] is used for dates
and times.

We use date and time instead of start_date and start_time as the default property
names for the start of the primary time interval; this keeps the names consistent if the
author switches between time-point and time-interval data models in their app.

Dates and times are stored separately and joined into datetime values (per ISO 8601
[85]) via expressions at runtime. This design was chosen because in these kinds of use
cases different data entries can be of different fidelities: e.g. one may want to record a life
event that generally has a time granularity, but not remember the time for a given entry.

Here is an example data entry from the migraine application:

Apart from the tracked data, the description of each Lifesheet is also stored as a JSON
file, which is a higher level description than the generated Mavo application.

Using the tracker schema, any application could interpret the tracked data in the same
way that Lifesheets does.

We believe if such schemas were to be standardized and used across tracking
applications, even as an export format, it could benefit users by maximizing interoper‐
ability and data portability. For example, even if a particular tracking application does not
allow the user to derive correlations on their data, there could be a third-party application

{
"date": "2021-09-13",
"time": "14:40",
"end_time": "16:30",
"end_date": "2021-09-13",
"notes": "Strong headache since wakeup",
"intensity": 2,
"side": "left"

}

JSON

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.5 Standardizing Tracked Data

242 /324

that allows users to upload various tracking data and derive correlations and
other insights.

Third-party applications can process data even without a description of the tracking
application, but having that allows them to interpret the data too or even provide alterna‐
tive editing interfaces.

Each application is represented by a JSON object with keys:

app: Main app information (e.g. name, what is being tracked, etc)
temporal: An object with two boolean keys: times and ranges, to select a temporal
category
entry, root, charts: Arrays of objects for entry fields, general fields, and charts
respectively

Each field (including charts) is represented as an object with:

a type key (values: property, expression, action, spacer, chart)
a name (mandatory in properties, optional in expressions)
a flags array with flags like "temporal" for storing special state about auto-gener‐
ated properties
a settings object with various options, depending on the field

Part of our argument is that Lifesheets has sufficient flexibility to easily specify a broad
range of manual tracking use cases. To support that argument, we looked at the tracking
use cases outlined by our needfinding survey participants (description, plus answers to
“What data do you record for each entry?” and “How do the tool(s) you use help you
understand your data?”). Three researchers worked together to review these use cases for
implementability with Lifesheets.

For semi-automatic cases, we only considered the manual component.

Researchers split the 168 use cases into four categories: i) Invalid, not enough data to
discern what the answer was trying to convey or participant had misunderstood the ques‐
tion (7) ii) Use cases where at least one of the researchers could outline a complete
Lifesheets implementation (properties, expressions, actions, charts) were marked as “Im‐
plementable” (153, or 95% of valid use cases). If they were not sure, they implemented the

Lifesheets Case Studies9.6 85.9 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.6 Lifesheets Case Studies

243 /324

use case. iii) Use cases that the researchers were certain could not be implemented, were
marked as “Not implementable” (6) iv) The remaining two use cases were marked as “Bor‐
derline” (2).

The data entry component of nearly all valid use cases (161/162 or 99.4%) was imple‐
mentable with Lifesheets’ design. The one that was not, was a running tracker with a run‐
ning route drawn on a map, as Lifesheets does not support drawing as an input widget
(drawing on a map and uploading it through a media property would have worked, but is
suboptimal), not does it connect to any wearable location tracking devices.

For the remaining 7 unimplemented or borderline cases, the issues were:

The 2/8 borderline cases needed correlations between different tracked data. Visual
correlations are possible, by tracking all data on the same lifesheet and plotting two
different fields on the same chart. However, it may be suboptimal to use the same
tracker for both, and we cannot know if participants were referring to visual corre‐
lations or computed ones.
3/8 required access to existing large datasets or APIs (nutritional info of foods,
locations of places). Small datasets (e.g. baby teeth duration, or WHO child growth
data) can be entered as hidden general fields and used in expressions or plotted in
charts. However, this becomes impractical above a certain number of data points (≈
20 or so).
1/8 needed notifications
1/8 required a proprietary calculation of fitness level. This may be feasible with
expressions, but there is no way to know without more details.

It is important to note that Lifesheets requires more knowledge than simply reaching for a
widely available application. For example, in a menstrual/ovulation tracker (3 use cases),
ovulation can be predicted by adding the average cycle length to the cycle start date and
subtracting 14 days (in Formula² expressions: date + avg_cycle_length - 14 * days()
where avg_cycle_length is a general expression with value average(duration).
However, not everyone would be able to perform this calculation. In practice, we expect
that once Lifesheets is deployed widely, only a few users would need to know how to
implement the calculations for common cases, and the rest would simply “fork” their
sheets and customize them.

Discussion9.6.1 86 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.6 Lifesheets Case Studies

244 /324

The use case data as well as the researcher assessments is included in the supplementary
materials.

In this section, we present more details about some of the more interesting, complex cases
we implemented.

While most respondents who wanted to track their child’s language development
only tracked words with dates, there was one who listed “language” as one of the fields
they track.

Figure9.10 Bilingual child vocabulary tracker.

Detailed Case Studies9.6.2 86.3 %

Bilingual Child Vocabulary

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.6 Lifesheets Case Studies

245 /324

Any vocabulary tracker (even a monolingual one) is an example of a tracking application
that requires a hierarchical schema, and thus, is hard to do with spreadsheets or most no-
code tools.

This is an outline of the lifesheet implementation:

Temporal category is Single Date
Two (one for each language) multi-valued Text properties with 0 initial items. We
use prefixes to distinguish the two.
Two named expressions to count the new words in each entry, e.g.
english_word_count with value count(english_word)[^6]
Two cumulative sum expressions to count total words, e.g.
total_english_word_count with value $previous.total_english_word_count

+ english_word_count

Named expressions for counting total vocabulary and total new words (e.g.
total_english_word_count + total_greek_word_count)[^7]
Expressions to calculate percentage of vocabulary by language (e.g. an
english_percentage expression with value 100 * (total_english_word_count

/ total_word_count))
An expression to show the age of the child when the entry was entered
Three line charts, two for showing the average word count per month for each lan‐
guage and one for plotting the percentage of English per month

While it is not strictly necessary for implementing this use case for one’s own needs, we
also included a general birthday Date property and a child_name property (we could use

hardcoded values), to allow others to “fork” the sheet and use it for their own child(ren)
without having to comb through every expression to figure out what to change.

The resulting application can be seen in Figure 9.10 and the implementation can be
explored at lifesheets.app/app/?sheet=github.com/lifesheets-templates/my-lifesheets/zoe-
words/app.json©=1. It can be trivially modified to support trilingual or other polylin‐
gual families.

This lifesheet tracks hours worked by a babysitter, payments by the parents, as well as
occasional expenses, and displays total balance owed.

Babysitting Calculator 86.6 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.6 Lifesheets Case Studies

246 /324

https://lifesheets.app/app/?sheet=https://github.com/lifesheets-templates/my-lifesheets/zoe-words/app.json©=1
https://lifesheets.app/app/?sheet=https://github.com/lifesheets-templates/my-lifesheets/zoe-words/app.json©=1

This lifesheet showcases a useful pattern: how one can emulate heterogeneous entries with
different temporal characteristics. Conceptually, it needs three types of entries:

Care that is a regular date/time range entry with no other fields
Payment which corresponds to a payment by the parents, and does not need any‐
thing more than a date and an amount.
Balance which adjusts the balance by a specific amount. This is useful for a)
consolidating past entries into a single equivalent entry and b) reimbursing the
babysitter for expenses (e.g. museum tickets). Like Payment, this only needs a date
and an amount.

To implement this, we add a type Options property with three values: Care, Payment,
Balance. We select the widest temporal category that we need (range of dates & times).

We then set the visibility of end_time, end_date, end_time to an expression that only
shows them when type = ’Care’. Similarly, amount is only shown when type != ’Care’.

Figure9.11 UI for actions, showing two simpler actions and a more complex, composite one: i) Add new entry with pre-
filled fields ii) Set end date to current time (essentially marking an event as “finished”) iii) “Consolidate” entries by replacing
them with a new equivalent entry

To facilitate data entry and automation, we implement three actions: i) Two actions for
entering each type of entry and ii) An action to consolidate entries, which adds a Balance
entry with the value of the total balance, and deletes all entries after it (see Figure 9.11).

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.6 Lifesheets Case Studies

247 /324

The rest is simple properties, and expressions that can be directly generated with widgets.
Like in the previous case, we have made this more generalizable by introducing general
properties for currency and hourly rate and used them in the corresponding prefixes and
calculations, so that it can be copied and used by others.

Figure9.12 The finished care hours calculator. A live version of this application can be found in
lifesheets.app/user/lifesheets-templates.

The application can be seen in Figure 9.12 and the detailed implementation can be
explored in lifesheets.app/app/?sheet=github.com/lifesheets-templates/my-
lifesheets/childcare/app.json©=1 .

To evaluate Lifesheets’ learnability and efficiency, we ran a user study of 10 participants.
We used spreadsheets as a control because they are the most common tool people reach
for when they cannot find a suitable application (Section A.1.6).

The 10 (2 female) participants were recruited among survey respondents that fulfilled the
following inclusion criteria: (1) Had opted-in to participating in the user study, (2) had

User Study9.7 87 %

Participants9.7.1

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.7 User Study

248 /324

https://lifesheets.app/user/lifesheets-templates
https://lifesheets.app/app/?sheet=https://github.com/lifesheets-templates/my-lifesheets/childcare/app.json©=1
https://lifesheets.app/app/?sheet=https://github.com/lifesheets-templates/my-lifesheets/childcare/app.json©=1

enough familiarity with spreadsheets to write basic formulas and (3) track or want to
track at least 6 things total (self-tracking + parental tracking)

Ages ranged from 30 to 47 (median = 39, x̅ = 38.6, σ = 4.9). 5/10 were parents (1
female). 5/10 had little to no programming experience. 3/10 rated their ability to write
spreadsheet formulas “advanced” and 7/10 “basic”. User study sessions were conducted
over Zoom and took 90-120 minutes each.

We used a within-subjects design, with each participant creating a specific tracking appli‐
cation with Lifesheets and a different one with Google Sheets. Both the assigned apps
and the order of the two conditions were randomized and counterbalanced. The two
applications were (a) a Migraine tracker and (b) a Productivity tracker. We selected
these use cases as the two tasks for a variety of reasons: (a) both were among the most
common use cases (Figure A.1) (b) both required date and time ranges, the most
complex of the four temporal categories (c) they were implementable with Lifesheets, but
nontrivial

Participants were first briefly interviewed about their tracking habits (primarily to build
rapport). The control condition consisted of them creating their assigned application in
Google Sheets step by step Table 9.1.

The experimental condition consisted of them watching a 7 min recorded tutorial
about Lifesheets, then doing a small practice task (smoking tracker) for x̅ = 10min where
the researcher could help them. A smoking tracker was selected because it was simple to
implement, yet practiced all core Lifesheets concepts. Then they would go on to create
their assigned lifesheet, without researcher help.

If there was time at the end (unfortunately only in 4/10 of sessions), participants were
encouraged to work on a freeform task for their own needs.

After these tasks, participants completed a post-study questionnaire which included
separate System Usability Scale (SUS) [115] questions about creating and using the
application, for both conditions. It also included a few multiple-choice questions about
their experience with Lifesheets and how it compares to spreadsheets and tailored
tracking applications. Participants completed the post-study survey on their own, without
researcher oversight.

Procedure and Study Setup 87.1 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

249 /324

MS1 ML1

MS2 ML2

MS3

MS4 ML3

MS5 ML4

MS6 ML5

ML6

MS7 ML7

WS1 WL1

WS2 WL2

WS3

WS4 WL3

WS5 WL4

WS6 WL5

WS7 WL6

WS8 WL7

WS9 WL8

Tracking
application

Spreadsheet Lifesheet

🤕
Migraine

Create a new sheet to keep track of your migraines. Each
migraine should have: Date and time it started and ended

(if it has ended), Intensity of pain (1-5), Side of head (left, right, or both)

Add sample data 1 (3 entries)

On each migraine, display its
duration in a human-readable way

Display the time that has passed since the last migraine ended

Show a bar chart with the average intensity per month

Show a pie chart with the breakdown of migraines per side

Add button to end the last migraine.

Add sample data 2 (1 entry)

👩🏽‍💻
Productivity

Create a new sheet to keep track of your worked hours. Each
work session should include the date and time you started

and stopped working, and which project (Personal, Synergy, Breeze, Quest)

Add sample data 1 (3 entries)

On each work session, display its
duration in a human-readable way

On each work session, display the amount of money earned assuming
an hourly rate of $50. You do not charge for fractions of an hour.

Now modify this to show 0 earnings when the project is "Personal"

Display your total earnings to date.

Display a table with your total earnings per project

Display a pie chart with the hours you worked on each project

Add sample data 2 (1 entry)

Table9.1 The tasks for both applications and both conditions. The wording of each task has been lightly edited for length.

(Not Applicable)

(Not Applicable)

(Not Applicable)

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

250 /324

Spreadsheet Lifesheet

🤕
Migraine

Completion: 0/5
Time:

Failed tasks: 3 (x̅ = 2.4)

Completion: 4/5 
Time: 14m 33s

Failed tasks: 0 (x̅ = 0.4)

👩🏽‍💻
Productivity

Completion: 2/5 
Time: 17m 56s

Failed tasks: 1 (x̅ = 1)

Completion: 3/5 
Time: 10m 4s

Failed tasks: 0 (x̅ = 0.6)

Table9.2 Task completion rates, times, and number of failed tasks per condition. Numbers are medians unless otherwise
noted. x̅ is the mean.

As shown in Table 9.2, participants generally succeeded more at implementing these
applications with Lifesheets compared to spreadsheets, took less time, and failed at
fewer tasks.

There were recurring patterns in the issues participants faced in either condition, which
we discuss below.

The Lifesheets’ personalization features were well-received, despite being spartan. All 10
participants customized at least one aspect of the application style (color, icon), even
though they were not asked to by any task.

Nearly all participants tried to use the “Name” field as a visible label, rather than an iden‐
tifier for referencing. Most recovered once they saw the error in the UI, but 2/10 needed
researcher intervention (and were counted as failures).

Even after, some struggled to find where to actually place a human-readable label, as
they did not identify “Prefix” and “Suffix” as suitable and were looking for a “Label” field.
All were able to recover, and preferred prefix/suffix over their initial expectation.

Results & Discussion9.8
87.7 %

(N/A)

Lifesheets UI9.8.1 88 %

Personalization

Name vs Prefix vs Suffix vs Label

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

251 /324

Most participants did not understand the difference between the different preview modes
(Design mode, Preview mode, opening the app in a new tab).

They expected to be able to save data in Preview mode, in which the data entered is
currently intended for experimentation only. Some expected that “Save” in the Lifesheets
editor would also save the data they had entered (it saves the lifesheet itself — which
includes a separate Save button to save data).

The participants with the least programming experience expected the Design view to
have more WYSIWYG features (e.g. moving fields around with drag & drop), while the
programmers were generally content to use the sidebar and did not even use the
WYSIWYG features that the Design view did support.

It is hard to measure the real efficiency difference of using a lifesheet in a lab setting: since
data entry is artificial, with dates and times in the past, the user is fighting against the
default values, rather than taking advantage of them.

Regardless, we observed a significant difference in the last data entry task (no signfi‐
cant difference in the first task): adding one item took a median of 20s (migraine: 18s,
productivity: 23s) in Lifesheets and a median of 57s (migraine: 53s, productivity: 59s) in
spreadsheets. In the Migraine task this was largely due to the “End migraine” action
from ML6 as the migraine to add had just finished. All participants used the action they
had created instead of entering data manually. However, Producitivity did not include
any actions, and yet the difference was comparable. We hypothesize that participants had
simply grown more familiar with lifesheets by then and could take better advantage of the
interface.

The predefined temporal fields of Lifesheets implement the common UI pattern where
the end date is not shown until an end time is entered, as it uses a dynamic default value
that depends on the start date, and both times. This initially confused 2/10 participants as
they were looking to enter an end date before entering an end time.

Customization can be a double-edged sword: U9 had reordered their fields to experi‐
ment with the interface and had trouble during the data entry task because controls were
in unpredictable places. 3/10 were initially confused that new entries were added to the
top, they expected them to be appended. Interestingly, their expected behavior would have

Preview Modes
88.1 %

Data Entry9.8.2 88.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

252 /324

resulted in worse ergonomics: if entries were added to the end, one needs to scroll
through all entries to see and edit their new entry, or just to see the most recent data.

3/10 participants did not notice that a placeholder entry existed when they began
entering data, and just ignored it, then were confused that there was a superfluous entry.
The placeholder entry was not surprising in the preview while editing the application, it
only became suprising when actually using the application. To address this, we plan to
start with 0 entries outside the editing environment in the future, and only use a place‐
holder entry in the preview.

Most participants struggled with spreadsheet cell references at least once, regardless of
whether they used the selection GUI or tried to write out references.

Several participants made errors that would have been apparent with column names,
but were difficult to discern with spreadsheet ranges such as e.g. E2:E9. In some cases, the
error itself was that the participant attempted to reference a column by its header, rather
than use a range. None used named ranges to overcome these issues.

There was no such issue in the Lifesheets condition, as names are used for referencing.

In both conditions, participants struggled with operations due to unexpected operand
types. In spreadsheets, many struggled to perform operations between dates because their
entered dates were treated as text. Some operations produced duration values (e.g. 2:5)
which they could not interpret or reformat to make more human-readable.

In Lifesheets, many tried to do math with the output of the duration() function,
which is a text value (e.g. "5 months"). Predictably, those with programming experience
figured the issue out far faster than the rest.

Specifically for durations, this pattern can be easily supported, by making duration()
return a text value that when coerced to a number returns the number of milliseconds
(which is what date/time functions expect).

Formulas9.8.3 88.4 %

Referencing Data

Datatypes and Operations 88.6 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

253 /324

Nearly all participants struggled to calculate durations and present them in a human-
readable format with spreadsheets. The participants most successful at these tasks sub‐
tracted two date/time values and formatted the result as a duration, but this was still not
particularly human-readable (it was presented as hh:mm:ss, even for durations over 24
hours, e.g. “607:0:0”).

Their data modeling intuition played a crucial role in setting them up success: none of
the 5/10 who started their spreadsheets with separate dates and times could figure out
how to combine them to get a single date/time value to perform calculations with.

Subtracting date/times produced a fractional number of days, which they found con‐
fusing. Searching the documentation or googling for help yielded functions that did not
help them (such as DATEDIF() or DURATION(), both of which are for date intervals, and not
date/time intervals).

The Productivity condition includes a task where hours worked need to be multi‐
plied by hourly rate to display earnings (WS4/WL3). 3/5 subjects struggled with this in
the spreadsheet condition, as multiplying a duration with a number produces a result for‐
matted as a duration with unclear units (e.g. 25:3).

No-one was able to present the time since the last migraine in the spreadsheet. One
participant thought of using MAX() to get the latest date, but could not present the differ‐
ence between that and the current time in a human-readable way.

Participants were vocal about their frustration while attempting any tasks that involved
math between date/time intervals in spreadsheets.

All participants were able to accomplish these tasks in Lifesheets. For entry duration,
there was no corresponding task because Lifesheets displays this in a human-readable way
automatically (e.g. “3 days, 5 hours” or “1 hour, 30 minutes”

Duration Math

“this is giving me a headache” — U1

❝
“Honestly, I would rather calculate it manually and not use a formula” — U4

❝
“I never did something like that with spreadsheets and it really sucks. I can cry” — U5

❝
“That was frustrating” — U6

❝
“This is showing me how much I don’t like Google Sheets” — U9

❝

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

254 /324

). Everyone used the Duration widget to calculate time since last migraine (ML3),
though 2/5 were confused about the “Auto” unit (but tried it anyway).

Only the productivity tracker required the use of a conditional (WS5, WL4). 3/5 partici‐
pants were successful in using IF() for it in spreadsheets, and 5/5 in Lifesheets. All 5 par‐
ticipants in Lifesheets used the Conditional widget instead of writing an expression, 4/5
successfully (U7 did not understand they could have an “Otherwise” value as well).

Despite this being a task that would really benefit from auxiliary data (e.g. a separate
hourly rate field), only one participant in each condition thought to create a separate
spreadsheet column or field to make the expression more readable. This validates the
existing finding that end-user programmers reuse by cloning [88].

Only the productivity tracker required the use of an aggregate (total earnings,
WS6/WL5). All participants were able to accomplish this, under both conditions. In
Spreadsheets, 4/5 participants wrote the formula on their own, and one used the menu to
insert a SUM() that they then edited. In Lifesheets, all 5 participants used the Sum widget.
One had not given a name to their (in-entry) earnings expression, but named it then so
that it could be used as the argument to the sum.

Handling temporal data was particularly difficult in spreadsheets. There is a tension:
meaningful temporal calculations require combined date/time values, but that is not a
natural format for human data entry. Our study verified this tension: half our partici‐
pants started with separate columns for dates and times, then struggled to combine them
for calculations. More than half (3/5) did not include an end date, only an end time,
expecting to be able to calculate the end date from the other three columns. The other
half started with combined date/time values, but then struggled to enter them textually,
with 2/5 of which completely failing to figure out a textual format that was recognized as
a date/time.

Conditionals 88.9 %

Aggregates 89.2 %

Data Modeling9.8.4

Temporal Data

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

255 /324

Despite spreadsheets providing a way to constrain input to a specific format (data valida‐
tion), which also displays suitable input widgets (e.g. a date picker), only 2/10 participants
used it for dates and times (and only 4/10 for any value).

In Lifesheets, all 10 participants selected the correct temporal category without
hesitation.

There were few differences in non-temporal data modeling tasks in spreadsheets. All par‐
ticipants were able to create the necessary properties with roughly similar names. Only
4/10 used any type of data validation.

In Lifesheets, 9/10 customized the entry name, 1/10 was happy with the default
“entry”. In the Migraine task, all selected “migraine”, whereas in the Productivity
tracker, names were more varied: “hours worked” (2), “task”, “session”, and “work”. This is
expected: a migraine is a concrete event, while a work session is more abstract.

All 10 participants created suitable properties and correctly understood the difference
between property types. All 10 participants selected suitable types for their properties
with minimal experimentation. While none of the tasks required multi-valued properties,
every participant seemed to understand what selecting “Multiple values” did (it turns the
property into a collection), and could recognize that they did not need it for these tasks
(4/10 after experimentation). Across both tasks, 4/10 participants experimented with
selecting “Multiple values” on a Text property instead of selecting an Options property in
the corresponding subtask, but seeing the collection management controls it created was
enough feedback to help them realize it was not what they needed.

Some more specific data modeling observations:

Migraine:
Intensity: All 5 participants selected a Number type
Side: 4/5 selected an Options property; one created two toggles instead: left,
and right.

Productivity:
Project name: All 5 participants used an Options property

Other Data Modeling Tasks 89.3 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

256 /324

Each structured task included two forms of reflection visualizations, that were essentially
grouping tasks: Migraine called for a bar chart of average intensity by month
(MS5/ML4), and a pie chart of the breakdown of migraines per side (MS6/ML5), while
the Productivity app called for a table of total earnings per project (WS7, WL6), and a
pie chart of hours worked on each project (WS8/WL7).

Participants generally struggled a lot with these in spreadsheets, especially those
involving temporal grouping and aggregation. While it is known that spreadsheet
charting interfaces are generally poor [5], the main issue at play seemed to be unrelated to
these issues. Indirection was a big barrier: if creating the chart required auxiliary data
such as a separate column or a pivot table, users struggled. Participants generally expected
to be able to create the visualizations through a combination of settings in the charting
interface, and continued trying different parameters until they got the right result (often
as a happy accident), or got frustrated and gave up.

Non-programmers struggled more with indirection. We hypothesize this is because
programmers are more used to creating “helper variables” as containers for intermediate
values, while end-users expect to be able to achieve their goal by selecting the right com‐
bination of user interface settings. Interestingly however, even programmers had trouble
with auxiliary columns in spreadsheets.

In the Productivity tracker, both visualizations required similar tables: projects on
one dimension and earnings or hours on the other. No participant used a pivot table for
this. The 2 that succeeded at this task used a hardcoded list of projects with SUMIF() to
aggregate earnings and hours. It is debatable whether this should be marked as a success,
as it is not a generalizable solution.

In the spreadsheet condition, no participant was able to display a bar chart of average
migraine intensity per month. Grouping by month was particularly hard. 2/5 thought of
creating a separate column but failed at doing so. Averages by month were also hard: if
they could not extract the month, they could not use AVERAGEIF() to calculate an average
on it. U5 said, “I don’t think I could do that. I would not be able to do that. I’m already thinking
how to do that in a lifesheet, but in this case, I will give up.”.

The migraines per side pie chart was easier due to the lack of grouping and aggregation.
Regardless, 2/5 participants failed. Of the 3 that succeeded only one understood how they

Pivot Tables and Charts9.8.5
89.6 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

257 /324

achieved the right result, the other two simply tried different settings until they got the
right result.

Participants had a significantly easier time with the Lifesheets charting interface,
which is optimized for grouping tasks as a thin abstraction over .

All 5 were able to display a bar chart of average migraine intensity per month, in a
median of 34s. 4/5 were able to display a pie chart of migraines per side in a median time
of 24s, although they hesitated before grouping by a non-temporal factor. The one that
couldn’t, U8, had created two separate toggles for the migraine side: left and right.
Creating the chart is possible with this design but requires a hidden expression to return a
single value (e.g. if(left and right, ’both’, if(left, ’left’, ’right’)) or
if(left, ’L’) & if(right, ’R’) to avoid conditional nesting which novices find
hard [11]) , and as discussed above participants have trouble with adding hidden
auxiliary data.

All participants were able to display a table of total earnings per project, and unlike
spreadsheets, the list of projects reactively updated with the data. None had a separate
field for hours worked, so 2/5 failed at the subsequent task of displaying a pie chart of
total hours per project. As discussed earlier, it felt far more natural to programmers to
create a hidden auxiliary field than to non-programmers. Both participants that failed
were in the non-programmer group, and all three that created a hidden hours field had
programming experience.

Participant responses to the charting interface ranged from positive to enthusiastic. U9
during the bar chart task: “Out of the things you have going on here, the charting is
remarkable. I just created this bar chart with zero effort and you saw how much I strug‐
gled in Google Sheets.”. And then during the next pie chart task: “I thought I have no
freaking idea how to do that, and then it was just right there!” U10: “Lifesheets made cre‐
ating charts A LOT easier than Google Sheets. It makes a lot of assumptions for me that
I don’t have to manually tell it.”

There was only one action task: A button to end the last migraine in the Migraine con‐
dition. In Lifesheets, this involved constructing an action to set end_time to time($now)
for the last entry. There was no control for this since spreadsheets do not support a similar
feature (except via script).

Actions9.8.6 90.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

258 /324

A core difference from Mavo is the handling of computed properties. In Mavo, these are
framed as properties whose value happens to be an expression, and are typically neither
editable nor saved in the data store. Lifesheets has an expression authoring GUI and a
property configuration GUI, which are separate. Since configuring a property’s editing UI
is rarely useful for computed properties, but expression authoring affordances definitely
are, these were instead framed as named expressions.

However, some participants of our user study did inquire about combining the two
concepts, e.g. having custom widgets whose value was computed from an expression. This
is already somewhat possible by setting a property’s default value to an expression, but
that is a workaround, not a first-class concept. This may indicate that a better direction
might be to blur the line between the two concepts and make both types of UIs available
to both of them, varying only which one is shown by default, and hiding only the parts
that truly are not meaningful for computed properties.

Lastly, charts are simply dynamic Mavo collections that use grouping and aggregation
to generate a table of data, which is then either output directly, as a pivot table, or
wrapped in an <h-chart> 4:1 web component to transform it into a chart.

All 5 participants understood what actions are and how to specify one and 4/5 suc‐
ceeded on this task. The one who failed (U8) selected the correct action type (Set) but
could not figure out how to specify the current time (used $now instead of time($now)),
which is quite a natural syntax that we should support.

All proceeded to use this button in the subsequent data entry task (ML7), which made
this task far faster than the same data entry task in the control condition (MS7) (median
of 18s vs 54s).

The participants’ frustrations with spreadsheets permeated their SUS evaluation: They
gave spreadsheet creation a median SUS score of 33.75 (x̅ = 36.25, σ = 21.3), which corre‐
sponds to an adjective rating between “Worst imaginable” and “Poor” according to [166].
In contrast, lifesheet creation got a median SUS score of 78.75 (x̅ = 75.75, σ = 10.3), far
above the acceptability threshold of 67, and corresponding to an adjective rating between
“Good” and “Excellent”.

U1 liked the temporal settings:

Overall Impressions9.8.7 90.3 %

Ease of Creating Tracking Applications

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

259 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-4

U4 found the expression creation UI easier in Lifesheets:

U8 found Formula² expressions and Lifesheet’s visual builder helpful:

Participants rated using a lifesheet far more pleasant than a spreadsheet. On a scale of 1
(Very pleasant) to 5 (Very unpleasant), they rated using a spreadsheet x̅ = 3.6 and the
lifesheet x̅ = 1.8.

Spreadsheet usage got a median SUS [115, 166] score of 51.25 (x̅ = 50.5, σ = 23.8),
which corresponds to an adjective rating of slightly below “OK”. Lifesheet usage got a
median SUS score of 90 (x̅ = 87.25, σ = 9.4), which corresponds to an adjective rating
between “Excellent” and “Best imaginable”.

U3 remarked on the efficiency of the data entry interface: “Easier and more structured.
Even this little “Add” button, it feels like adding things, like adding a new row to a spreadsheet.
The interface is much friendlier than a Google sheet.” U4 said that they preferred the visual
presentation of a lifesheet: “The spreadsheet looks sterile, this is more visual. My current
tracking is a blackboard on my fridge. I respond to things more visual.” U5 also liked the more
structured data entry interface of a lifesheet, as well as the fact that it works well on a
phone: “working with data in spreadsheets feels horrible, working with the lifesheet was way
better. […] Lifesheets is more structured, the way you work with datetimes is way better. Super
cool that it works with your phone as well.” U6 liked actions and also mentioned mobile

“Using spreadsheets to track something with dates and times is really hard, if I
write dates it kind of works, but it’s weird. One of the core principles of lifesheets
is that times and dates are at the core, you get a lot of power from how this works.”
❝

“Oh a lot easier than using the spreadsheet, because I didn’t have to try
and remember formulas. When you’re confronted with a spreadsheet
you have to think about a lot, how to arrange columns, here it’s
almost a drag & drop of what you want to do; a lot more intuitive.”

❝

“Expressions are super helpful. That’s the first step in getting something back
from your data. The UI to create a sheet is really nice. It basically works around
everything that I was just struggling with Google Sheets and the calculations I
was trying to do. […] Very easy, can’t compare to the spreadsheet, it’s a breeze.”

❝

User Satisfaction 90.5 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

260 /324

friendliness: “Definitely easier than spreadsheets. The customizable buttons to add entries and
create shortcuts, that’s definitely an improvement over spreadsheets. Ease of entry is a big one.
All the data and the visualization, it’s great, easier, but the deciding factor is that I can’t enter
stuff into a spreadsheet when I’m in the middle of doing something.” U7 also mentioned the
structured data entry, and also the charts: “Having it automatically put together something
that has this summary view at the top. With spreadsheets it’s not organized the same way,
maybe it can be but it requires more effort. This is a simpler view, with spreadsheets it’s hard to
tell where to look. Spreadsheets have this nature of sometimes there are things this way, or that
way, and you don’t know where to scroll. It can be difficult to do a handoff. As a manager I don’t
want to spend too much time figuring out where everything is, there’s a lot of importance to that.
I have a lot of challenges with spreadsheets, this guides people more, ‘that’s it, don’t worry about
the rest’.” U9—the participant that tracked the most things out of everyone else in the
study—spontaneously made Lifesheets his #1 bookmark during his session and remarked
on customizability and portability “Better than other data trackers because it’s so customizable.
A huge benefit of what you’re doing is that it’s on my computer. You’re one step ahead of things
like Bearable [144] in that regard.”

All participants said they were more likely to use a lifesheet over a spreadsheet for
tracking (6/8 6 much more likely, 2/8 slightly more likely). 5/7 participants even said they
would be more likely to use a lifesheet over a widely available app for the same purpose!
(3/7 much more likely)

Several participants (U1, U5, U10) expressed privacy and data ownership concerns about
using existing widely available tracking applications, consistent with one of the main bar‐
riers identified in the literature [123, 125–128].

Likelihood of Lifesheet Usage over Alternatives 90.8 %

Privacy, Data Ownership, and Portability 90.9 %

“Sharing data with a random number of companies makes me uncomfortable.” — U5

❝

The question was added after the first 2 sessions
6

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

261 /324

http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-6
http://localhost:8002/phd/chapters/lifesheets/#fn-lifesheets-6

Consequently, participants liked that the data Lifesheets records are stored in their own
space of their choosing, rather than the servers of a commercial application. Those who
could program additionally remarked on data portability:

U10, a professional programmer, said that for certain use cases, any data stored on any
server is not private enough:

Motivated by their comments, we added support for optionally storing data locally in the
browser, rather than a cloud service. Madata already supported this, all that was needed
was to expose it in the GUI.

Figure9.13 Three of the lifesheets participants created for their needs during the user study. From left to right: mood
tracker, run tracker, tracker for cat asthma attacks

4/10 participants (U1, U2, U3, U4) had time to create a custom tracking application at
the end of their session. They created: two mood trackers, a run tracker, and a tracker for

“I like that it stores the data on GitHub where I could use it on
other projects. Also like that it saves history on GitHub.” — U3❝

“Biggest concern I have with these apps is privacy, even in a private repo. Some
trackers are so private I wouldn’t even want on GitHub. In the tracker I have built,
the data is local and encrypted. Some use cases I wouldn’t use lifesheets for because the
data is ultra private. But the majority of my trackers could probably fit here.” — U10

❝

In the Wild9.8.8 91.1 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

262 /324

cat asthma attacks. Three are shown in Figure 9.13 (the run tracker not shown is a simpler
version of the one shown).

Figure9.14 The three lifesheets participants created for their needs in the days following the user study. From left to right:
i) U4’s improved cat asthma tracker ii) U6’s stretching tracker iii) U7’s custom period/ovulation tracker

U4, U6, and U7 voluntarily spent time using Lifesheets on the days following the study
(Figure 9.14). Interestingly, all were in the non-programmer group, indicating that per‐
haps even though non-programmers struggle more, they also perceive more value in a
system like Lifesheets. U4 created an improved version of their cat asthma tracker with
more granular data. U6 created a tracker for their stretching sessions and used it over a
period of two weeks to track data until they realized they did not want to use a phone at
all during these sessions. U7 created two trackers: a period & ovulation combination
tracker and an app to track aspects of the manufacturing process in their materials engi‐
neering startup, to replace a legacy system. They preferred that we not screenshot the
manufacturing tracker. They stopped using Lifesheets because they ran into bugs (they
did not provide further details).

U4 used Lifesheets regularly for five months after the study. We interviewed them again
seven months after their original user study session. They had continued to evolve their
cat asthma tracker (Figure 9.15) and used it to track data until it was no longer medically
relevant. They had placed a shortcut to this lifesheet on their browser’s bookmark bar and
said they recorded data immediately or at most a few minutes later. They shared this

Longitudinal Follow-up Case Study 91.3 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.8 Results & Discussion

263 /324

lifesheet with their veterinarian, who found it helpful. They mostly used it on their
desktop computer, but also entered data through their phone if late at night.

Before Lifesheets, they were recording this data on a fridge blackboard and their
phone’s notetaking application. They felt that using a lifesheet improved both the rate and
granularity with which they collected data (they estimated 1/15 missed entries with
Lifesheets vs 3-4/15 with their previous methods). They were motivated enough that they
manually ported all their older data to their lifesheet.

When asked about the reasons they preferred a lifesheet over a spreadsheet, they
remarked on the efficiency of tracking data, its visual appearance (“spreadsheets feel need‐
lessly complicated and clunky”), and customization (“this feels like something I made”). They
also felt adding a field to a lifesheet required less commitment, whereas in a spreadsheet it
would require “a whole new column I have to scroll past”.

At the time of the interview, they also said there were several more lifesheets they plan
to create: a mood tracker, a back pain tracker, and a chore tracker. In addition to their own
use cases, they talked about Lifesheets to many of their friends, and even made a proto‐
type of a pain tracker for a close friend (Figure 9.15).

Figure9.15 The lifesheets U4 worked on for the months following the study From left to right: i) Improved cat asthma
tracker ii) Prototype of pain tracker

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.9 Future Work

264 /324

While Lifesheets simplifies application building, there is still a learning curve. To fully
embrace tinkerability [164, 165] it would be useful to provide starting templates for
common use cases that a user could customize instead of starting from scratch. It is
already possible to visit another user’s profile and “fork” their public lifesheets, but there is
no discovery mechanism for other users. Perhaps there could be a “featured” users or
lifesheets section to facilitate. Note that it is also possible to “fork” an existing public
lifesheet by opening it in the editor and sharing the URL. This is not exposed in the UI
though U6 and U7 discovered it by experimentation.

Several participants mentioned that clicking Save felt foreign, as most modern
applications autosave. The main reason Lifesheets require explicit saving is that data is
saved in a remote version controlled system (GitHub) and every save creates a history
entry (commit). We wanted to avoid polluting that history with too many entries, so that
it’s usable for data recovery, as we plan to expose that history in the UI. Reasonable com‐
promises could be: configurable autosave, persisting data locally until saved remotely,
and/or coalescing minor consecutive edits into one history entry.

4/10 user study participants (U3, U6, U9, U10) mentioned reminders as the one missing
piece for them to fully adopt Lifesheets. This was also a popular complaint about existing
tools in the survey, and is a prevalent need in the literature. In line with its programmable
philosophy, Lifesheets could support optional notifications with either static values or
expressions This could easily be a setting on the Lifesheets editor so that users can opt-in
and customize the kinds of reminders they would receive.

Location is the only data entry type that was identified as common in [141] but
Lifesheets does not yet support. An ideal implementation would support locations of var‐
ious granularities (country, city, specific address, coordinates), as well as place names (e.g.
specific restaurant). Suitable expression functions should be added to extract metadata

Future Work9.9
91.6 %

Templates and “forking”9.9.1

Autosave and Visible Edit History9.9.2 91.7 %

Reminders9.9.3 91.8 %

Locations9.9.4

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.9 Future Work

265 /324

from location properties (e.g. timezone, country, city, etc.), and suitable default values to
automatically set from the current location.

While Lifesheets abstracts temporal math into a high level setting, there is one missing
piece: timezones. Formula2 automatically takes timezones into account when specified,
but currently, all tracking is presumed to happen within a single timezone. Date/time
properties should support optionally specifying a timezone, with presets that read it from
another Location property. This would also allow different start and end timezones, e.g.
for travel.

A common motivation for tracking is to find correlations between different kinds of
tracked data. [167–169]. This was also requested by U4 and U9. Visual correlations can be
supported by allowing data from other lifesheets to be “mounted” to the current one, and
plotting their data in the same chart. Going further, Lifesheets could even automatically
detect correlations, without requiring any user hypothesis.

While Lifesheets works well for manual data entry, which—as discussed—has several
benefits, semi-automated tracking [134], a combination of manual and automatic track‐
ing, maintains these benefits but reduces the high data capture burden of manual track‐
ing. It would be useful for lifesheets to be able to connect with external services and sync
data, which could then be augmented further by the sheet. This was also requested by U4
and U9.

Right now there are two levels of privacy: in public lifesheets everyone can read the data
but only the author can edit, and in private ones only the author can read or edit data. In
the user study, U10 asked “How do I share a private lifesheet with my wife?”. There is no way
to share a private lifesheet with other users through the Lifesheets interface. Technical
users can do so through GitHub, but since all lifesheets are currently stored in the same
repository, this would share all of their private lifesheets. Lifesheets could address this by

Timezones9.9.5 91.9 %

Correlations9.9.6

Semi-automated Tracking9.9.7 92 %

Collaboration and Competition9.9.8

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.9 Future Work

266 /324

optionally storing lifesheets in separate repositories and providing UI for managing
collaborators.

U9 suggested allowing users to “compete” on certain publicly tracked metrics (e.g. exer‐
cise), to encourage themselves to do better.

For many tracking cases, predicting future occurrences is the primary motivation for
tracking (“to find patterns in the data and get insights” was the most popular reason for
self-tracking in our survey). Currently this can be done by encoding the prediction logic
in expressions, but Lifesheets could provide a more sophisticated, high-level way out of
the box.

In this chapter, I presented Lifesheets, a domain-specific End-User Programming system
for creating personal tracking applications with minimal technical skill. We discussed the
results of our needfinding study, which looked into the tracking needs of 85 people. We
evaluated Lifesheets through case studies and a lab study of 10 participants, who all rated
Lifesheets as more usable than spreadsheets for application creation, data entry, and
reflection. We believe that Lifesheets can empower individuals to achieve their goals of
preserving the data that matters to them about themselves and their loved ones, reflecting
on them, and reaching higher levels of self-knowledge. Beyond evaluating Lifesheets, the
lab study provided several insights on the usability of Formula², the viability of the vision
behind Madata, and the learnability of Mavo concepts like properties and expressions
embeded in static content.

Predicting Future Entries9.9.9 92.1 %

Conclusion9.10 92.2 %

Chapter 9 Lifesheets: End-User Development of Quantified Self Applications  9.9 Future Work

267 /324

 5,820 words (17 min read)

The preceeding chapters have probably spawned many questions and hopefully a
few good ideas. This chapter offers a discussion of some of the higher-level concepts,
limitations, and possibilities surrounding this work, and suggests some directions for
future research.

There are three main categories of current limitations:

1. The low-hanging fruit: these can be overcome in relatively obvious ways, and it is a
simple matter of specifying and prototyping the behavior. For these, we sketch out
potential solutions and the tradeoffs of each.

2. The harder problems: these limitations are not inherent to the approach, but would
require sustantial design work to be solved well. For these, we outline potental
directions for future research.

3. And last, the fundamental limitations: these are inherent to the approach itself,
and it is likely they may not be solvable within it, at least not without very major
changes to Mavo or the environment. We describe these as well. Every scientist
should have a healthy skepticism when faced with statements about the impossi‐
bility of a certain problem, and this should be no exception. It is entirely possible
that even for this latter category, more research may reveal creative ways to work
around them that are not currently obvious. However, they certainly would require
more work and creativity to tackle than the first two categories.

Empowering novices to create the small-scale data-driven applications they envision for
their needs is already a worthy goal. But once this becomes possible, the question arises:
what are the boundaries of this approach? Could it possibly be used to prototype real

CHAPTER 10

Discussion
Future Work&

Can This Model Build Non-Trivial Applications?10.1 92.8 %

268 /324

-world applications like Facebook or Amazon? What about games like Fortnite or
Minecraft? Or graphics editors like Photoshop or Illustrator?

Clearly, for any language that allows imperative programming as an escape hatch, the
answer is yes, but that answer is of similar utility as the assertion that we can build these
applications with any machine able to manipulate symbols on an infinite tape [170]. A
more meaningful question would be whether Mavo could add enough value to substan‐
tially simplify the development of such applications. We explore several facets of this
question below.

Figure 10.1 The very first Mavo demo: A web application to manage and publish a person’s list of past and future
conference talks

The first Mavo use case was a list of conference talks (Figure 10.1), and the dozens that
followed in its first few years were of a similar scale and spirit: small-scale, mostly CRUD
applications plus very lightweight computation for editing structured data in a high
fidelity WYSIWYG interface, with few editors and any number of consumers (readers).
For these use cases, Mavo was envisioned as an easier yet more flexible, more lightweight,

Scope10.1.1 92.9 %

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

269 /324

https://mavo.io/demos/talks/

and more portable alternative to CMSes, that still provided higher fideity editing inter‐
faces than said CMSes.

Over the years, as its formula language (Formula2) and data I/O (Madata) developed,
and with the introduction of data actions, Mavo has become capable of building
applications that break out of this mold. It has been used to build games, color pickers,
interactive graphics editors, code playgrounds, social feedback apps, chat applications, and
more. Many such examples are described in the Case Studies chapter.

However, applications whose main complexity lies in their interactivity model rather
than their data model are still largely out of scope. For example, a drawing applications, or
a VR game. Applications requiring parts of such interactions can still be built, if these
interactions are encapsulated in web components, but Mavo is likely not a good fit for
applications where these types of interactions are central.

Because Mavo is implemented as a pure JavaScript library and all computation occurs on
the client, serving a Mavo app to any number of users is as easy and scalable as serving
static web pages. Scalability issues arise only around access to the data, which may be
stored locally or outsourced to third-party storage providers such as Dropbox.

Mavo is therefore perfectly suited to so-called Personal Information Management (PIM)
applications. These applications have a single author and reader, and the amount of data
they manage is generally small. For the ultimate in scalability, the Mavo app web page can
be stored (“installed”) on the user’s own machine and data stored locally in the user’s
browser. While this old fashioned approach sacrifices the access-from-anywhere advan‐
tages of cloud-based services, it frees the user of any dependence on the network. Even
when operating in the cloud, PIM-oriented Mavo applications scale extremely well
because each user’s data is isolated. Each user’s Mavo simply loads or stores their own
small data file, which is the bread-and-butter operation of the popular storage services. A
peer-to-peer synchronization service for web storage would allow users to manage infor‐
mation on all their devices while still avoiding dependence on any cloud services.

Mavo is also well suited to “web publishing” applications where an author manages and
publishes a moderate-size hierarchical data model and present it to audiences of any size
through views enriched by computation of scalar and aggregate functions over those
items. This large space spans personal homepages, blogs, portfolios, conference websites,
photo albums, color pickers, calculators, and more. Since only the author edits, these

Scalability10.1.2 93.1 %

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

270 /324

applications scale like the PIM applications for editing, while on the consumption side
any number of consumers are all simply loading the (static) Mavo application and data
file, which again is highly scalable. Conversely, Mavo can be used to supercharge web
forms that collect information from large numbers of individuals—such as surveys and
contact forms—to adapt dynamically to inputs and perform validation computations.

Mavo was not originally designed to make social or big data apps that present every
user with the results of complex queries combining data from many users. This
social/computational space is important, but so is the large space of “small data”
applications that Mavo can provide. Even on big-data applications, Mavo may in the
future be a useful component for simplified UI design if powerful back-end servers are
used to filter down and deliver only the small amount of data any given user needs in
their UI at a given time.

Mavo is designed to work well with hiearchical data models, such as those that can be
represented as JSON objects. This is a superset of tabular data models, as a table can be
expresssed as an array of objects. However, a reasonable question is how could Mavo
handle graphical schemas, which per [27] occur in 27% of the applications they studied
— though only 22% of these cyclic (6% of the total dataset).

Mavo can already express graphical data models, but it requires a lot of manual effort
(an example is described in Section 8.1.4). Authors need to designate a certain property
of each object as (conceptually) a primary key, peform manual effort to ensure it is unique
(e.g. via suitable formulas doing data validation), write custom Formula2 expressions to
look up objects by this key and display them elsewhere, and author dynamic collections to
facilitate data entry of foreign keys.

Inspired from the several decades of database system design, Mavo could introduce
language primitives that make primary and foreign keys first-class citizens, which would
greatly simplify this process.

These could include:

Enforcing uniqueness: A way to specify that a certain property needs to be unique
Primary keys: A way to designate a certain property as the one that uniquely iden‐
tifies an object (which would also enforce uniqueness)

Data Model Structure10.1.3 93.4 %

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

271 /324

Foreign keys: A way to designate a certain property as a foreign key that references
another object’s primary key.

Authors could then either template the referenced data in a custom way, or when this
power is not needed, Mavo could provide a default rendering that summarizes the object
without requiring authors to write a new template for it (possibly by reusing the same
template as in the defining collection, but adding a certain CSS class than can be used as
a styling hook).

These kinds of implicit objects can be useful for more than foreign key references. For
example, entering a URL in a property could expose an object with metadata about the
website (e.g. title, description, image), or entering an address could expose an object con‐
taining metadata about the location (e.g. GPS coordinates).

More research is needed about the best mental model and syntax for expressing these
concepts in a way novices can understand.

A big current limitation of both Mavo and Madata is the data model granularity.
Fetching data from the server is typically only done once: when the page is loaded. The
data powering a Mavo app is fetched as a whole (often from a JSON file) and stored as a
whole, even if the app only needs to read and edit a subset (via mv-path). Access Control
is also expected to function at this level: a user can either read or edit the whole dataset, or
no part of it.

These limitations are no issue for the use cases that drove Mavo’s design, such as per‐
sonal information management applications, calculators, and web publishing applications,
where the data is small and the editors are few and know each other. However, as authors
who liked its novice-friendly syntax tried to push the boundaries of what was possible,
these limitations started to become more restrictive.

Due to its distributed architecture, supporting data models with finer granularity is not
a simple matter of programming, due to the number of moving parts involved. First, not
all backends support finer granularity. The types of file-based backends that power the
cloud storage of most Mavo applications (Dropbox, GitHub, Google Drive) typically
only support reading and writing a single file.

Data Model Granularity10.1.4 93.7 %

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

272 /324

It is important to tease apart the use cases that benefit from granularity, as solutions may
vary depending on the need:

Security & Privacy: Many multi-user applications require granular access control
at the item or even property level, rather than the dataset level to protect sensitive
data or prevent malicious usage.
Usability: Improve the UI for collaborative use cases by hiding irrelevant elements
or making certain properties non-editable
Conflict Minimization: For multi-user applications, it is important to reduce the
number of conflicts that can occur when multiple users edit the same data to a
minimum, which requires frequent synchronization and push updates.
Performance: The larger the dataset, the slower it is to fetch and save it in
its entirety.

We now discuss some potential directions for future research in these areas.

Even for Mavo’s originally envisioned use cases involving small groups of editors acting in
good faith, restricting edits of certain parts of the data to certain users can help prevent
accidental data corruption, and hiding irrelevant elements can streamline the UI.

This is a lighter form of granular access control (henceforth referred to as Presentational
Access Control (PAC)), as it does not actually require server-side enforcement, since none of
the users involved is malicious.

PAC is largely already possible in Mavo, though not necessarily easy:

mv-if can be used to hide elements based on formulas, and formulas can take
include user information into account (e.g. username of current user).
mv-mode="read" can be used to prevent certain subtrees from being editable, and its
value can be an expression that depends on user information.
Separate JSON files can be used to define groups of users and their permissions,
and Formula2 expressions can be used to check these permissions.

One conspicuous absence is the lack of a way to disable certain collection management
operations (e.g. conditionally disabling item deletions, while still allowing additions).
There are ways to hide the controls for these operations (e.g. the mv-item-bar attribute, or
simply CSS), but this communicates a different user intent than disabling them (e.g. we
may be removing them because we have implemented these functionalities via different

Granular Access Control: Security, Privacy, and Usability 93.9 %

Presentational Access Control (PAC)

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

273 /324

controls). A primitive to disable the actual action would be higher level and thus more
expressive and more future-proof.

It is important to note that there are no primary use cases for PAC, i.e. no use cases
require it or benefit from it. There are only use cases for which it is an acceptable work‐
around, and use cases for which it is not. Furthermore, PAC workarounds need to be
designed with care to avoid users assuming they are secure and building applications that
contain security vulnerabilities.

PAC may suffice for small-scale collaborative use cases, but for the types of multi-user
applications mentioned in the beginning of this section, server-side enforcement of access
control is necessary.

There is a cornucopia of very common multiuser use cases that require this kind of
granularity. Some examples include:

A comment section on a blog post: any user can add a comment, but only the post
author can edit or delete it. (restricted writes)
A survey, where anyone can submit a response, but can only see and edit their own
response. (restricted reads and writes)
A chat or IM application, where anyone can send a message, but only edit or delete
their own messages.
And of course, any social network.

In cases like these, it is not enough to merely hide the UI elements that allow editing —
permissions need to be enforced by the backend. This surfaces a tension that our approach
creates: by not controlling the backend, but merely the choice of backend, Madata is also
bound by the limitations and capabilities of these backends. Very few of the backends that
Madata currently supports have the ability to enforce fine-grained access control. For
example, there is no way to instruct GitHub to only allow writing certain parts of a JSON
file to certain users, or even certain files.

However, back-end services with richer access models exist. For instance, DataHub
[171] provides row-level access control, where each table row is “owned” by different
users. Similarly, Firebase [172] is a popular commercial hierarchical database, where each
node can have its own access control rules (and is already supported by Madata).

Enforced Access Control

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

274 /324

Even though Madata can be used with backends like these (and already supports some), it
does not yet support reading or reflecting granular permissions in its objects. Similarly,
Mavo can be used with such backends, but the author needs to take care of implementing
suitable access control on the backend service and then reflecting it in the UI (via the
same patterns as those used in PAC).

Even if we only consider backends that support granular access control, there are sev‐
eral pieces that need to fall into place for the Mavo ecosystem to properly support it:

1. Madata needs to support reading these types of permissions from the backend (for
the current user) and exposing them to the application developer in a unified
format that is backend-agnostic.

2. Mavo needs to support reading granular permissions from Madata and automati‐
cally reflecting them in the app UI

These steps would already be a big improvement, as they would allow users to define elab‐
orate access control rules in their backend service, and everything else would just work.
However, typically the systems for defining these permissions require a higher level of
expertise than the typical Mavo author possesses, and the syntaxes for defining these rules
suffer from the same incompatibilities Madata was designed to normalize.

What if we could go further, and have the Mavo app become the source of truth for
these permissions? Mavo could provide a novice-friendly syntax for authors to define
granular access control rules in their Mavo templates, and Madata would define a back‐
end-agnostic abstraction to describe them. Mavo would then be able to communicate
these permissions to Madata, and the Madata backend would translate them to the
appropriate backend-specific rules.

This brings us to the question: if novices could declaratively define access control rules in
their Mavo template, and have then be translated to the appropriate backend-specific
rules, what would that syntax look like?

There are two potential directions:

1. A completely declarative micro-syntax, with keywords for permissions and roles
(e.g. mv-can-edit="own")

2. A formula-based approach, where elaborate logic can express complex rules (e.g.
mv-can-edit="post.owner = $username").

A Declarative Syntax for Granular Access Control?

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

275 /324

The first approach is has a lower threshold and is easier to translate to different backends,
but also has a lower ceiling, and thus may not be expressive enough for all use cases. The
second approach has a higher ceiling, but also a high threshold and imposes a higher
burden on supporting additional backends, putting its generalizability at risk.

A layered approach could involve a hybrid of the two: a declarative syntax at first, cov‐
ering the most common use cases, that can later expand to a formula-based approach for
more complex rules, where the initial keywords (e.g. everyone, own) are translated to suit‐
able formula expressions.

Rather than restricting granular access control to the few backends that natively support
it, a different direction would be to allow a Mavo app to be backed by multiple backends,
by extending the mv-storage attribute to apply to any property. This would facilitate gran‐
ular access control by partitioning.

For example, it would make it possible to create a blog where the posts are stored in
Dropbox and can only be edited by the author, with upvotes stored in a service that allows
public writes. Or, a designer portfolio where project metadata is stored on GitHub in a
public repository, but billing details and client notes are stored in a private repository.

Sufficiently granular partitioning, if done well, could solve a very wide range of use
cases. For example, the blog comments use case could be solved by storing each user’s
comments in their own file space (e.g. a fork of the GitHub repository). This is not
without its own set of challenges, which have been studied in the context of distributed
systems, and are out of scope for this work.

It could be argued that this kind of partitioning is an eigensolution [173]: it does not
only solve (many cases of) granular access control but also several other use cases, such as
mashups. For example, a user could create a book reading log, where they store their rat‐
ings and notes in a personal Dropbox file, and display book metadata from a third-party
API. Or a recipe manager, where the recipes are stored in a personal Google Drive file,
and nutritional information is fetched from a third-party API. Mashups are already
possible with Mavo, by using a separate Mavo app for each data source, and Formula2

expressions to join the data, but the authoring experience is suboptimal.

Two Backends, One App?

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

276 /324

A creative solution (which can be combined with other ideas) is for Madata to support
storing data in “backends” that are not storage services in the typical sense, and take
advantage of their more powerful access control mechanisms.

For example, one could imagine a Madata backend that stores its data in GitHub
Issues, with each comment storing JSON for a collection item. Or as comments on a
hidden Facebook post.

This gives Madata developers (and thus, Mavo authors) access to a storage mechanism
that supports the commonly needed paradigm where any registered user can append, but
the data owner (and admins) can edit or delete, without needing to configure any access
control rules or set up complicated services.

Multi-user applications — especially realtime ones — require robust conflict resolution to
scale, and larger datasets are slower to load and save. The typical solution to both is gran‐
ular data reads and writes, where only the data that is needed is fetched or saved rather
than the entire dataset. The less data that is transmitted over the wire, the faster data I/O
will be, and (auto)saving granular changes frequently and pushing granular updates to the
UI can reduce conflicts to a minimum that can be resolved via the UI.

For backends that support these capabilities, this becomes a matter of Madata (a)
reading that they exist and interfacing with them, (b) exposing them to the application
developer in a backend-agnostic way, and (c) Mavo handling such updates and propa‐
gating them to the displayed data.

Mavo already tracks edits in a granular way, so that it can communicate unsaved
changes to the user, so it would be trivial to save these changes incrementally if Madata
supported it. Similarly, applying partial updates can be relatively simple by recursively
updating the data model in places where it has not been edited by the user.

However, this needs partial updates to be communicated by Madata as a hierarchical,
ordered list of operations. This is because there is no way to know the identity of an object
in a JSON file, as neither Mavo nor Madata enforce any kind of primary key. Approaches
like JSON Patch [174] or some types of CRDTs [175] could be used for this purpose.

As with granular access control, this becomes a lot harder when the backend does not
support these capabilities. For backends that do not support push updates and incre‐
mental writes, Madata could emulate them by polling the backend for changes, diffing

Squint and Everything Becomes a Storage Backend

Incremental Data I/O: Conflict Minimization & Performance 95 %

Chapter 10 Discussion & Future Work  10.1 Can This Model Build Non-Trivial Applications?

277 /324

changes with the fetched version of the data, then applying that diff to the displayed data.
Similarly with saving, Madata could refetch the remote data, apply the user’s changes to it
as a patch, and save that result. This would not help with performance since it still
involves fetching and saving the entire dataset (in fact, it would make it worse due to the
additional diffing/patch steps), but it would help with conflict minimization.

No discussion on the limits of Mavo would be complete without discussing the limits
imposed by the platform itself. As a client-side extension, there are certain things Mavo
simply cannot do, at least not without interfacing with a server-side component. The vast
majority of these limitations are well-intentioned security protections, such as the same-
origin policy [119] which prevents client-side code from reading HTTP responses from
other origins [120], however it is unfortunate that there is currently no way for end-users
to opt-out of these protections for certain trusted applications, which gives proprietary
native platforms a competitive advantage.

Websites can opt-out of the same-origin policy for requesting sites by setting Access-
Control-Allow-Origin and other CORS [100] HTTP headers. However, as with any
opt-in mechanism, many neglect to do so. Additionally, CORS does not disable all cross-
origin protections. For some, there is no opt-out mechanism, such as reading the contents
of cross-origin iframes.

For example, it was mentioned in the Portfolio case study, while Mavo could generate
thumbnails for uploaded images, it would not be able to do so for linked images. This also
restricts the number of APIs that Madata can support, as many do not provide CORS
headers.

Spreadsheets blur the line between data and computation, with formulas used ad hoc in
cells, and columns being able to contain a mix of data and formulas. This design trades off
maintainability for flexibility. Repeating a formula across a column is managed by essen‐
tially copying it to each cell, with the UI providing affordances to make this less painful,
and there is no way to ensure all copies of the formula stay in sync. However, it also it
allows creating one-off exceptions, which can be useful in a world of messy data.

Platform Limits10.1.5 95.3 %

Formulas as Data?10.2 95.4 %

Chapter 10 Discussion & Future Work  10.2 Formulas as Data?

278 /324

Most data-focused no-code tools take a different approach for tables: columns are either
data or formulas. This is decided upfront, and each cell automatically follows the same
rule. This design makes the opposite tradeoff, sacrificing flexibility for maintainability.

Figure 10.2 Entering an inline formula in Coda

An interesting pattern in some no-code tools is to allow formulas to be entered alongside
rich text (e.g. entering = while writing kicks the editor into formula mode), to interleave
one-off computations with prose (Figure 10.2).

This is a very powerful pattern, and is currently not possible in Mavo. It remains an
open question how to best support this pattern in Mavo, likely in an opt-in way.

Creating custom filters via dynamic collections and Formula2 expressions has been pos‐
sible in Mavo almost from the start. An example of this can be seen in the CSS WG
Disposition Of Comments application.

Thanks to work by Sanchez D. [176], sorting via an mv-sort attribute (and corre‐
sponding Formula2 sort() function) and grouping via the Formula2 by operator became
possible as well. There is no HTML syntax for grouping, making grouping in place tricky
but possible: (it would require sorting by the grouping expression and inserting content
with its value before the first item that has a different value).

Higher-level Primitives for Data
Exploration (Grouping, Filtering, Sorting)

10.3
95.6 %

Chapter 10 Discussion & Future Work  10.3 Higher-level Primitives for Data Exploration (Grouping, Filtering, Sorting)

279 /324

http://localhost:8002/phd/chapters/case-studies/#css-doc
http://localhost:8002/phd/chapters/case-studies/#css-doc

While this approach affords a high ceiling, it also imposes a high threshold. Writing the
logic for one’s own filters is nontrivial, tedious, and error-prone, even for Mavo, and
novices do not necessarily have the training to make good UI decisions in this area.

Higher-level primitives for data exploration such as those provided by Exhibit [7]
could greatly simplify this process. Ideally these would automatically generate a suitable
UI based on the shape of the data and the schema of the data model, with escape hatches
to customize the UI if needed. Entirely custom widgets can still be used for more com‐
plex use cases, and even shared with others if abstractions (see Section 10.4) are added to
the language.

Orthogonally, better view-update handling by Mavo could make it simpler to build
custom data exploration UIs and still have editable data, not readonly copies.

There is a scarcity of abstraction and reuse mechanisms across most no-code or low-code
tools. Extension points typically involve use of scripting languages, rather than ways for
users to compose and reuse primitives of the language or tool they are already using. Part
of this may be lack of demand; we know that novices and end-user programmers prefer
cloning over abstractions [88], and it is something we have also observed in our user
studies (Chapter 7).

However, to use the example of the most successful end-user programming environ‐
ment, spreadsheets have evolved a whole continuum of users, from expert programmers to
individuals who only use spreadsheets created by others and do not do any formula
writing themselves [177]. Abstractions would allow such power users to share their
creations with others, enriching not just their own experience, but that of the entire
community.

Complex Mavo applications can become difficult to manage due to the limited abstrac‐
tion and reuse mechanisms. Currently, Mavo can build some pretty complex interactive
widgets, but there is no mechanism to reuse them and compose them into larger
applications besides cloning, which restricts its ceiling, since there is only so much that
can be done in a single HTML file. In terms of its abstraction gradient cognitive dimen‐
sion [76], Mavo is closer to abstraction-hating than abstraction-tolerant.

End-user Abstractions10.4 95.8 %

Chapter 10 Discussion & Future Work  10.4 End-user Abstractions

280 /324

In this section, we discuss some potential directions for future abstraction and reuse
mechanisms in Mavo.

Last, for no-code abstraction mechanisms to be successful, it is not enough to simply
implement such mechanisms. The tool also needs to teach users how they can benefit, e.g.
by providing ways to convert existing duplicated structures to use an abstraction, or even
automatically identify good candidates for abstraction. This is certainly easier for visual
builders like Lifesheets rather than languages like Formula2 or Mavo HTML.

The extension point of plain HTML is custom elements, implemented via JavaScript.
Therefore, a natural extension point for Mavo HTML would be to allow users to define
their own custom elements, which encapsulate Mavo functionality. Ideally, this process
would be able to create regular custom elements that can be used without Mavo.

Authors can already define computed properties whose values are Formula2 expressions.
Functions are a natural next step, if viewed as parameterized computed properties.

Existing literature for adding custom functions to spreadsheets [178, 179] has explored
ways to smoothly transition from the specific to the abstract, by allowing users to convert
a regular cell formula to a parameterized function.

This approach could work well for Mavo too. Mavo already supports groups of proper‐
ties (objects) some of which can be computed. Only two things are missing to turn such a
group into a function: (a) A way to map input arguments to group properties, and (b) A
way to select a specific property as the one containing the return value.

This could be opt-in (certain groups are marked as functions), or all groups could also
be functions. The latter also opens up interesting interactions with Formula2’s scoping
rules: If scope can vary function code, is that a feature or a bug?

Lifesheets (Chapter 9) has shown that Mavo concepts can reach a much wider audience
when exposed visually. We believe this is a very small first step towards this goal. A higher
fidelity visual interface could go a lot further in visualizing the data model, Formula2

Reusable Components10.4.1 96.1 %

User-defined Functions10.4.2

Visual Mavo Builders and Direct Manipulation10.5 96.2 %

Chapter 10 Discussion & Future Work  10.5 Visual Mavo Builders and Direct Manipulation

281 /324

’s identifier resolution algorithm, introduce more direct manipulation interactions, and
elimiate syntax even further.

Additionally, Lifesheets was very narrowly scoped to personal tracking, but it became
clear that many of its ideas could be generalized to a more general no-code visual builder.
Its affordances for editable properties, formulas, actions, or charts have no particular
dependence to the personal tracking domain. It remains an open question where the
boundary lies between a GUI that is too general to be helpful, and one that is too specific
to cater to most use cases.

Anyone visiting a webpage could peek under the hood, see its inner workings, copy and
repurpose the code, and ultimately learn from the experience. Editing this HTML code
did not produce any errors, and rarely if ever produced non-local failures. Many of today’s
software engineers got their humble beginnings by tinkering with HTML and CSS in
this way. The so called tinkerability [164, 165] of the early Web served as a gentle intro‐
duction to programming for many of today’s software engineers.

Today, while “View Source” still exists, it is of far more limited utility. More often than
not, the HTML that reaches the browser is the obsfucated result of a complex build
process, or a stub for a JavaScript framework to fill in.

We hope for Mavo to serve as a first step towards restoring some of this tinkerability of
the early Web. Mavo applications are completely transparent: their UI, their logic, their
storage location, and frequently their data, are all visible in the HTML. Tinkering with
them does not require wading through dozens of JavaScript modules or understanding
complex architectures, but merely looking at the HTML like it’s 1999.

But beyond learnability and tinkerability, there are other benefits to this approach,
which hint at many possible future directions of research.

A big advantage of HTML-based approaches is that they are naturally interoperable,
without requiring any plugin or integration to be written: the HTML itself is the integra‐
tion point.

Towards a Declarative, Transparent Web10.6 96.3 %

Interoperability10.6.1 96.5 %

Chapter 10 Discussion & Future Work  10.6 Towards a Declarative, Transparent Web

282 /324

We saw an example of this in the e-shop case study (Chapter 8), where Mavo could inter‐
face with PayPal, a payment provider, without neither Mavo nor PayPal needing to know
about each other, simply because they both spoke the same language: HTML.

Figure 10.3 Using Mavo and A-Frame to create an interactive parameterized 3D scene with HTML. Interactive demo
at mavo.io/demos/aframe.

Another example is Web Components: any web component can be integrated with Mavo
simply by using it in the Mavo HTML. An extreme example of that is this Mavo -
AFame demo (Figure 10.3), where a 3D scene is created using the A-Frame web compo‐
nent library by Mozilla, and Mavo is used to parameterize it.

Last, as we saw in the SVG Path Builder case study (Section 8.2.1) this interoperability
extends to other markup languages that can be embedded in HTML, such as SVG
or MathML.

A declarative language that describes the application at a high level rather than the low-
level steps to achieve its various interactions, can automate many things that are currently
laborious and require expert knowledge.

An important example is accessibility. In the State of HTML 2023 survey [109], web
developers cited lack of knoweldge and low organizational priority as some of their core
pain points with making their web applications accessible to people with disabilities. The
more that is known about the application, the more of accessibility can be automated,
rather than depending on the individual author’s knowledge and effort. Mavo already

<a-scene>
<a-box position="[boxX] [boxY] [boxZ]"
 rotation="45 [boxRotation] 45"
 color="#4CC3D9" shadow></a-box>
<a-plane position="0 0 -5"
 rotation="-90 0 0"
 width="4" height="4"
 color="#7BC8A4" shadow></a-plane>
<a-sky color="#E9F2F9"></a-sky>

</a-scene>

HTML

Accessibility10.6.2 97 %

Chapter 10 Discussion & Future Work  10.6 Towards a Declarative, Transparent Web

283 /324

http://localhost:8002/phd/chapters/case-studies/#e-shop
https://mavo.io/demos/aframe/

adds several ARIA [180] annotations to the author’s HTML, but there is a lot more that
can be done in this area.

Declarative languages are better positioned for longevity. The very first page on the Web,
created by Tim Berners-Lee in 1991, is still viewable and usable today. In contrast, most
JavaScript-heavy applications from only a few years ago are already broken. One reason is
that declarative languages can be standardized and used by a variety of competing but
interoperating tools. Another is their fault tolerance; the HTML of this first website is
now considered invalid. In fact, approximately half of its source is highlighted as an error
or warning by the W3C Validator. And yet; every modern browser can render it flawlessly.
This should be contrasted with the behavior of most imperative languages, where a single
syntax error can break the entire application.

In recent years, LLMs are increasingly used to automate the authoring of code. This does
not make approaches such as Mavo obsolete — quite the contrary. Humans still need to
verify the generated code, and to do so, they need to understand it. The more readable and
transparent the generated code, the more it facilitates this human verification step. We
predict that code readability will become a top priority for future syntaxes, while effi‐
ciency of authoring will be less of a concern. We think that declarative languages like
Mavo are excellent candidates for this trend. Our Lifesheets study (Section 7.6) has

Longevity10.6.3 97.1 %

aside
While it is easier to design fault-tolerant declarative languages than imperative ones, not every declarative lan‐
guage is fault-tolerant. In the beginning of the 21st century the tide had briefly turned against HTML’s fault tol‐
erance, and towards strict syntaxes with draconian error-handling. Architecture of the World Wide Web [181], pub‐
lished by the W3C Technical Architecture Group in 2004 echoes this contemporary philosophy:

XML (and its HTML serialization, XHTML) was the poster child of this philosophy, and the effects of these
design decisions ripple through the Web to this day. Thankfully, it did not take long for most to realize that this
philosophy was not practical for the Web, and the tide turned back a few years later.

“Agents that recover from error by making a choice without
the user’s consent are not acting on the user’s behalf.”❝

The Future of Code Generation?10.6.4 97.4 %

Chapter 10 Discussion & Future Work  10.6 Towards a Declarative, Transparent Web

284 /324

https://info.cern.ch/hypertext/WWW/TheProject.html
https://validator.w3.org/nu/?doc=https%3A%2F%2Finfo.cern.ch%2Fhypertext%2FWWW%2FTheProject.html

already touched on this, by making Mavo code more readable and editable by novices who
would not have been able to author it. A lot more can be explored in this direction.

Chapter 10 Discussion & Future Work  10.6 Towards a Declarative, Transparent Web

285 /324

 318 words (1 min read)

Software development is currently a privilege enjoyed by a small minority of people. For
the rest, using a computer or phone translates to using prefabricated experiences created
by developers, with little hope for modification. The ability to shape the software you use
or create new software from scratch is for most people indistinguishable from magic.

But there is no fundamental reason for software development to be a privilege enjoyed
by few. It is merely a failure of design: languages and technologies that are overly com‐
plex, opaque, brittle, designed by and for experts, with little regard for the needs and
mental models of novices.

Mavo aims to be one step towards demystifying this magic, and to add to the small but
growing literature of programming languages and systems designed with HCI principles
and methods.

This thesis has presented Mavo, a suite of languages and systems that reduce the bar‐
riers novices face today in managing, storing, sharing, and transforming data on the Web,
and to facilitate web authoring practices that favor transparency and decentralization.

Mavo consists of three components, which are separate contributions: Mavo HTML, a
declarative HTML extension for specifying data-driven web applications; Formula2, a
new formula language for operating on hierarchical data in aggregate; and Madata, a
decentralized protocol and client library to reduce the complexities of remote data storage
down to a single URL and a unified API.

The three components work together synergistically to enable end-users to create high-
fidelity web applications with minimal effort. They have been designed with the design
principles that made the Web successful in mind: smooth ease-of-use to power curve, and
fault-tolerance. The Lifesheets experiment hints that paired with a visual interface, these
concepts can become even more powerful and far-reaching.

Taken together, these languages and systems offer new ways of thinking about
building and editing software on the Web, and the full potential of these ideas remains to
be explored.

CHAPTER 11

Conclusion

286 /324

 2,455 words (8 min read)

Participants were recruited through a call for participation on social media (Facebook,
Reddit, Twitter) and local parent groups. The survey received 85 responses in total, 42
being parents or guardians of at least one child. 22 were female-identifying, 32 were male-
identifying, and 2 identified as non-binary. 29 chose to not disclose their gender. Median
age was 39 (x̅ = 41.4, σ = 9.3).

To jog participants’ memory, the survey began by presenting a list of 26 common tracking
cases, collected by browsing tracking applications on the Apple and Google App Stores
(keywords: “tracking”, “tracker”, “journal”, “logging”) with five freeform fields at the end.
For each, participants could select wither they had tracked it manually, automatically, or
have wanted to track it (but didn’t) at any point in time. These options were non-exclu‐
sive, to account for semi-automatic tracking [134] and different attitides for different
time periods. Parents were additionally presented with another 13 parenting-related use
cases, with four freeform fields.

Respondents could then provide more details about their selections. There were no fur‐
ther questions for things they selected they track automatically. The full list of questions
can be found in Section A.2.

APPENDIX A

Personal tracking
needfinding survey

Needfinding Survey DetailsA.1
PopulationA.1.1

Questions and Survey FlowA.1.2

287 /324

54.12%
44.71%

40.00%
32.94%

29.41%
29.41%

27.06%
25.88%

22.35%
18.82%
17.65%

14.12%
14.12%
14.12%
12.94%

10.59%
10.59%
9.41%
9.41%
8.24%
7.06%
5.88%
4.71%
4.71%
4.71%
3.53%
3.53%
2.35%
2.35%
2.35%
2.35%

Diet / Eating Habits
Exercise

Body Measurements
Productivity

Mood
Menstruation (Period)

Joint Expenses
Medications Taken

Sexual Activity
Blood Pressure
Stress / Anxiety

Migraines or Headaches
Other Daily Symptoms

Ovulation
Sleep

Blood Sugar
Blood Test Results
Alcohol Consumed

Contractions
Bowel Movements

Pregnancy Symptoms
Arguments/Fights

Hours Outside
Social Interactions

Location
Cigarettes Consumed

Fetal Movements
Water Intake

Time Spent on Things
Pain

Books Read

0.00% 20.00% 40.00% 60.00%

Female Male Non-binary Prefer not to say

FigureA.1 Self-tracking use cases from the survey, ordered by percentage of respondents that manually tracked them.

Things TrackedA.1.3
98 %

Appendix A Personal tracking needfinding survey  A.1 Needfinding Survey Details

288 /324

Most participants were experienced trackers, self-tracking a median of 7 things (x̅ = 8.4, σ
= 5.3). This did not differ between parents and non-parents, but parents additionally
tracked a median of 4 things (x̅ = 4.8, σ = 4.1) about their children. While self-tracking
use cases were almost equally split between manual and automatic tracking (median of 4
(x̅ = 5.1, σ = 3.6) vs 3 (x̅ = 3.3, σ = 2.7)) parental tracking was almost exclusively manual
with only a median of 0.5 (x̅ = 1.2, σ = 1.9) automatically, indicating perhaps that despite
the rise of “baby wearables”[149, 150], parents keeping track of their children’s develop‐
ment is largely still a manual labor of love.

Female-identifying people self-tracked slightly more than male-identifying people: a
median of 8.5 things (x̅ = 9.4, σ = 5.1) vs a median of 6 things (x̅ = 7.6, σ = 5.1) respec‐
tively. However, when we look at parental tracking, the picture if vastly different: a median
of 6 (x̅ = 6.4, σ = 4.6) things tracked by mothers vs a median of only 2.5 (x̅ = 2.9, σ = 2.9)
by fathers.

52.38%

38.10%

35.71%

28.57%

28.57%

28.57%

23.81%

23.81%

23.81%

19.05%

11.90%

9.52%

Body Measurements

Diapers / Nappies

Nursing Sessions

Words Spoken

Milestones

Bottles Consumed

Sleep

Pumping

Foods Tried

Potty Training

Screen Time

Grades

0.00% 20.00% 40.00% 60.00%

Female Male Non-binary Prefer not to say

FigureA.2 Child tracking use cases from the survey, ordered by percentage of respondents that manually tracked them.

Appendix A Personal tracking needfinding survey  A.1 Needfinding Survey Details

289 /324

The most popular manually tracked items are shown in Figure A.1 and Figure A.2.

Nearly a quarter (24.71%) of respondents tracked or have wanted to track one or more
things not in the list of predefined common cases.

This was similar in the parental tracking set of questions, with 23.81% of parents
entering item(s) in the freeform text fields.

It could be argued that this figure was high because the researchers missed certain
common cases, but there was little overlap across subjects. Two researchers separately nor‐
malized differences in wording, then reconciled the result. Even after aggressive normal‐
ization, the only items that appeared more than once were “Books read” (3x), “Social
Interactions” (3x), Location (2x), and “Personal expenses” (2x) for self-tracking, and
“Teeth (when they come in and fall out)” (2x) for parental tracking.

Examples of unique custom use cases for adults were: water consumption, cleaning,
climbing progress, daytime sleepiness, scores on Lumosity and BrainHQ, time spent in Internet
rabbit holes, being kinder, stretching sessions, progress in studying a foreign language, breast
milk production, travel, groceries bought, yelling instances, prayers/mindfulness, teeth flossing,
Aimovig injections.

Examples of unique custom use cases for parental tracking were: tummy time, baths, nail
trimming, firsts, relationships, interests and wants, books read, prizes in reward system, accom‐
plishments, funny things said.

Respondents’ motivations are summarized in Figure A.3. By far the most common reason
for self-tracking was knowing thyself: to find patterns in the data and get insights. While
this was common for parental tracking as well, it was surpassed by data preservation for
posterity. Comparing the tracking subject to others was also a far more popular reason for
parental tracking than self-tracking. These differences are consistent with the literature,
which finds that parents track primarily to preserve memories and detect developmental
delays.[151, 153].

Custom Tracking Use Cases 98.3 %

MotivationsA.1.4 98.5 %

Appendix A Personal tracking needfinding survey  A.1 Needfinding Survey Details

290 /324

Percentage of reasons

A health professional asked me to

Just to preserve information — I’ll
figure out what to do with it later!

Other

To compare my child to others
 and see where they stand

To compare myself to others
 and see where I stand

To encourage myself to do
more or less of it

To find patterns in the data
and get insights

To share data with other people

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Adult self-tracking Adult self-tracking (wants) Parental tracking Parental tracking (wants)

Motivations for tracking and wanting to track

FigureA.3 Respondent motivations for tracking or wanting to track, broken down by self-tracking and parental tracking
use cases

The most common reasons people gave for not tracking things they have wanted to track
are shown in Figure 9.2. It is relevant that Lack of suitable tools was by far the most
common reason both for self-tracking (36.1%) as well as parental tracking (38.8%). Lack
of motivation seemed to be a less common reason in parental tracking, where the primary

Reasons for Not TrackingA.1.5 98.6 %

Appendix A Personal tracking needfinding survey  A.1 Needfinding Survey Details

291 /324

reasons for not tracking (in addition to lack of tools) were related to the overwhelm that
parents feel, consistent with [151].

Appendix A Personal tracking needfinding survey  A.1 Needfinding Survey Details

292 /324

In 91% of cases, respondents said they would be more likely to record data if it were quick
and easy (53.3% much more likely, 37.6% slightly more likely). Parents are even more
eager to record data if the capture burden was reduced: Only 2.5% would still not record
anything in that case (65% much more likely to record, 32.5% slightly more likely).

The lack of suitable tools we discussed in the previous session became more apparent
when we looked at the tools used.

For self-tracking, only half of tracked things are tracked with a widely available app or
website. The rest are mostly tracked via spreadsheets (15.2%), documents (12.6%), or even
handwriting (10%)

There’s an even higher scarcity of suitable tools for parental tracking. Only 37.5% of
things tracked are tracked with a widely available app or website. The rest are tracked via
documents (40%), spreadsheets (17.5%), and handwriting (2.5%).

For the question What do you track (or have tracked in the past) either for yourself or other
adults (e.g. a partner, a friend, your parents etc)? the 26 common cases presented to partici‐
pants were (does not include the 5 freeform fields):

General / Wellness
Exercise
Mood
Sleep
Stress / anxiety
Productivity
Menstruation (period)
Cigarettes consumed
Alcohol consumed
Hours outside
Screen time

Tools UsedA.1.6 98.7 %

Types of Tools

Needfinding Survey QuestionsA.2 98.8 %

Tracking Use CasesA.2.1

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

293 /324

Relationships
Sexual activity
Arguments/fights
Joint expenses

Health & Chronic conditions
Diet / eating habits
Body measurements
Blood sugar
Blood test results
Blood pressure
Migraines or headaches
Bowel movements
Other Daily symptoms
Medications taken

Pregnancy & conception (if you have ever been pregnant)
Ovulation
Contractions
Pregnancy symptoms
Fetal movements

These were presented in a matrix, with columns:

I have tracked this manually
I have tracked this automatically
I have wanted to track this (but never did)

Participants could check 0-3 of these per row. We decided against a N/A column to avoid
clutter.

This does have the downside that this survey design cannot distinguish between things
that do not apply at all (e.g. pregnancy-related things in a person without a uterus) and
things for which the participant never had any desire to track.

There was also a short FAQ at the top (answers were collapsed but participants could
expand them):

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

294 /324

What qualifies as tracking? Tracking is when you (manual) or a piece of software
(automatic) records information about an aspect of you or someone else’s life. E.g.
checking the back statement every month is not tracking of joint expenses, but if
you have a spreadsheet where you record things from these statements, then it is.
What if I track things about my children? Do not include things you’ve tracked
about your child(ren), as this is covered in a separate question.
What if someone else tracks these things about me? If someone else tracks things
for you (e.g. your partner or your doctor), please do not select that you track these
things. Answer about the things you track yourself (either about yourself or other
adults), and consider sending them this survey so they can participate too!
What is the difference between automatic and manual tracking? Tracking manu‐
ally is when data entry is performed by you, e.g. in a journal, document, spread‐
sheet, or app designed for this purpose. Tracking automatically is the kind of
tracking where a device or app does the data entry for you with little to no inter‐
vention. Even if you have to approve or start each session manually, it’s still auto‐
matic tracking for the purposes of this study if the actual data is produced automat‐
ically from device sensors and recorded automatically in an app without you having
to enter it somewhere. Certain types of tracking may be a combination of auto‐
matic and manual, e.g. you use a sleep tracker that records how long and how deep
you sleep, but then you go into the sleep log app and manually add notes about
what you dreamed of. In that case, you’d tick both boxes.

Example: If you use a smart blood pressure monitor to record your blood pressure
and the monitor automatically records it in its own app, we’d consider it automatic
tracking. If you manually go into a health tracker app and enter your blood pressure
measurements, we’d consider it manual tracking. If the monitor records it mostly
automatically, but sometimes the Bluetooth connection fails and you have to record
it manually, you’d tick both boxes.
When do I tick the “I have wanted to track this (but don’t)” box? This means that
the item applied to you at some point in your life and you have had a desire, inter‐
est, or need to track it, but for whatever reason you did not actually track it.

Participants were also asked “Are Are you a parent or caregiver for any children?”
with options:

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

295 /324

No
Yes, one child
Yes, one or more children

Those who selected any of the Yes options were also presented with another question,
“What have you tracked about the child(ren) in your care, if anything?” with another list
of common cases pertaining to parenting (and 4 freeform fields):

Body measurements (height, weight, head circumference etc)
Sleep
Foods tried
Breastfeeding/chestfeeding sessions
Pumping
Bottles consumed
Diapers / nappies
Words spoken
Potty training (pees, poops, accidents)
Milestones
Screen time
Time outside
Grades

There was also a short expandable FAQ about these:

What if I have tracked this for only one of my children? Answer that you have
tracked it, even if you have only tracked it for one of your children.
What if my child is too young for that metric but I do want to track it eventually?
If all children in your care are too young for that metric to make sense (e.g. a new‐
born baby has no “Foods tried”, “Words spoken”, or “Grades”), do not tick any of
the “I have tracked this” columns. You can still select “I want to track this” if you
plan to track it when your child is old enough.
What if someone else (e.g. another parent) tracks things about my child? If
someone else tracks things about your child (e.g. another parent or another care‐
giver) please do not select that you track these things. Please consider sending them
this survey so they could participate too!

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

296 /324

For every item participants selected they had wanted to track (but didn’t) they were pre‐
sented with a series of follow-up questions:

Why have you wanted to track this?
To find patterns in my data and get insights
To share data with other people
To compare myself to others and see where I stand
To encourage myself to do more or less of it
Just to preserve information — I’ll figure out what to do with it later!
Other: (freeform)

Why have you not tracked [thing]?
Lack of suitable tools
Not enough motivation to even look into how to track it
Lack of discipline to record the data
Too much data to record, task seems overwhelming
Other: (freeform)

If recording this data was quick and easy how much more likely would you be to
track [thing]? (1 choice)

Much more likely
Slightly more likely
I still would not record it

Anything else you’d like to add about not tracking [thing]? (freeform)

For each thing participants said they tracked manually, they were presented with the fol‐
lowing questions:

Why do you track this?
To find patterns in my data and get insights
To share data with other people
To compare myself to others and see where I stand
To encourage myself to do more or less of it
A health professional asked me to
Just to preserve information — I’ll figure out what to do with it later!
Other: (freeform)

What do you use to track [thing]?
What data do you record for each [thing] entry? (e.g. “date, time, intensity (1-5)”)

Follow-up QuestionsA.2.2
99.5 %

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

297 /324

How do the tool(s) you use help you understand your data? (charts, insights, pre‐
dictions, etc)
How satisfied are you with the tool(s) you have used to track [thing]?

Very satisfied
Somewhat satisfied
Neither satisfied nor dissatisfied
Somewhat dissatisfied
Very dissatisfied

What do you like about the tool(s) you use to track [thing]? (multiple choices, non-
exclusive)

It records some of the data automatically with no effort from me
It makes it quick and easy to enter the data I want
It shows statistics and charts that give me insights about my data
It allows me to export my logged data
It’s free
Other: (freeform)

If you could, what would you change in the tool you use to track [thing]? What
don’t you like about it? What would make it better? (freeform)
How long have you tracked (or did you track) [thing]?

A few days
A few weeks
A few months
6 months to a year
1 year or more
The entire time it was relevant (regardless of length)

Do you still track [thing]?
Yes
No

Why did you stop tracking it? (shown conditionally)
Too much effort to track correctly
No longer relevant
Other: (freeform)

How complete is the data you keep on tracking [thing]?

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

298 /324

Very complete, nearly every entry is recorded
A few entries are missed, but mostly complete
Very incomplete

How could the tool(s) you use help you keep track of more complete
data? (freeform)
How did tracking this differ for each child and why? (shown conditionally)

I tracked this the same for all my children
I only tracked this for my first child, no time after!
Other: (freeform)

Before each block of such questions, participants were given a choice to skip to the end of
the survey (the demographics questions). 12/85 did this.

The demographics questions were shown at the end, to eliminate stereotype threat:

Your gender:
Female
Male
Non-binary
Other: (freeform)
Prefer not to say

What is your age in years? (freeform, number)
What is your occupation? (freeform)
Anything else you’d like to add? (freeform)

Appendix A Personal tracking needfinding survey  A.2 Needfinding Survey Questions

299 /324

300 /324

Bibliography
[1] Berners‐Lee, T., Cailliau, R., Groff, J. and Pollermann, B. 1992. World‐Wide Web:

The Information Universe. Internet Research. 2, (Jan. 1992), 52–58.
10.1108/eb047254.

Cited in 1, and 1.1

[2] Connell, R.S. 2013. Content management systems: trends in academic libraries.
Information Technology and Libraries (Online). 32, (2013), 42.
Cited in 1.1, and 3.1

[3] Berners-Lee, T. 1999. Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web by Its Inventor. Harper San Francisco.
Cited in 1.1, and 5.1

[4] Koch, R. 2011. The 80/20 principle: The secret of achieving more with less: Updated 20th
anniversary edition of the productivity and business classic. Hachette UK.
Cited in 1.1.1

[5] Chambers, C. and Scaffidi, C. 2010. Struggling to Excel: A Field Study of
Challenges Faced by Spreadsheet Users. 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing (Sep. 2010), 187–194. 10.1109/VLHCC.2010.33.
Cited in 1.1.1, and 9.8.5

[6] Chen, Y. and Chan, H. 2000. An Exploratory Study of Spreadsheet Debugging
Processes. PACIS 2000 Proceedings. 12, (2000).
Cited in 1.1.1

[7] Huynh, D.F., Karger, D.R. and Miller, R.C. 2007. Exhibit: Lightweight Structured
Data Publishing. Proceedings of the 16th International Conference on World Wide Web -
WWW ’07. (2007), 737. 10.1145/1242572.1242672.
Cited in 1.1.1, 2.5, 3.2, and 10.3

[8] Kushmerick, N., Weld, D.S. and Doorenbos, R. 1997. Wrapper Induction for
Information Extraction. (1997).
Cited in 1.1.1

301 /324

https://doi.org/10.1108/eb047254
https://doi.org/10.1108/eb047254
https://doi.org/10.1108/eb047254
https://doi.org/10.1109/VLHCC.2010.33
https://doi.org/10.1109/VLHCC.2010.33
https://doi.org/10.1109/VLHCC.2010.33
https://doi.org/10.1145/1242572.1242672
https://doi.org/10.1145/1242572.1242672
https://doi.org/10.1145/1242572.1242672

[9] Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D.,
Owens, B.B., Stephenson, C. and Verno, A. 2011. CSTA K--12 computer science
standards: revised 2011. (2011).
Cited in 1.2, and 3.1

[10] Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. 2010. The
Scratch Programming Language and Environment. ACM Trans. Comput. Educ. 10,
(Nov. 2010), 16:1-16:15. 10.1145/1868358.1868363.
Cited in 1.2, and 1.4.4

[11] Verou, L., Zhang, A.X. and Karger, D.R. 2016. Mavo: Creating interactive data-
driven web applications by authoring HTML. UIST 2016 - Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (2016), 483–496.

10.1145/2984511.2984551.
Cited in 1.2.1, 1.2.3, 2.3, 4.1, 5.1, 6.1, 6.1, 6.1, 6.2, 7.1, 9.2.2, 9.4.2, and 9.8.5

[12] Verou, L., Alrashed, T. and Karger, D. 2018. Extending a reactive expression
language with data update actions for end-user application authoring. UIST 2018 -
Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology (2018), 379–387. 10.1145/3242587.3242663.
Cited in 1.2.1, 1.2.4, and 1.2.4

[13] Leiba, B. 2012. OAuth Web Authorization Protocol. IEEE Internet Computing. 16,
(Jan. 2012), 74–77. 10.1109/MIC.2012.11.
Cited in 1.2.2, and 5.1

[14] Hardt, D. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. Internet
Engineering Task Force: https://datatracker.ietf.org/doc/rfc6749. Accessed: 2024-07-
22. 10.17487/RFC6749.
Cited in 1.2.2, 5.1, and 5.3.4

[15] Kuebler-Wachendorff, S., Luzsa, R., Kranz, J., Mager, S., Syrmoudis, E., Mayr, S.
and Grossklags, J. 2021. The Right to Data Portability: conception, status quo, and
future directions. Informatik Spektrum. 44, (Aug. 2021), 264–272.

10.1007/s00287-021-01372-w.
Cited in 1.2.2, and 5.1

Bibliography

302 /324

https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/2984511.2984551
https://doi.org/10.1145/3242587.3242663
https://doi.org/10.1145/3242587.3242663
https://doi.org/10.1145/3242587.3242663
https://doi.org/10.1109/MIC.2012.11
https://doi.org/10.1109/MIC.2012.11
https://doi.org/10.1109/MIC.2012.11
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.1007/s00287-021-01372-w
https://doi.org/10.1007/s00287-021-01372-w
https://doi.org/10.1007/s00287-021-01372-w

[16] Myers, B.A., Pane, J.F. and Ko, A.J. 2004. Natural programming languages and
environments. Commun. ACM. 47, (Sep. 2004), 47–52. 10.1145/1015864.1015888.
Cited in 1.2.4, 2.7, and 4.1

[17] Tufekci, Z. 2019. Quantified Self. Scientific American. May (2019), 2019.
10.1038/scientificamerican0519-85.

Cited in 1.3

[18] Myers, B., Hudson, S.E. and Pausch, R. 2000. Past, Present, and Future of User
Interface Software Tools. ACM Transactions on Computer-Human Interaction. 7,
(2000), 3–28. 10.1145/344949.344959.
Cited in 1.4.1, and 3.3

[19] Blackwell, A. and Burnett, M. 2002. Applying attention investment to end-user
programming. Proceedings IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (Sep. 2002), 28–30. 10.1109/HCC.2002.1046337.
Cited in 1.4.2, 1.4.2, and 1.4.2

[20] Bonar, J. and Soloway, E. 1983. Uncovering principles of novice programming.
Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages (New York, NY, USA, Jan. 1983), 10–13.

10.1145/567067.567069.
Cited in 1.4.3

[21] Ma, L. 2007. Investigating and Improving Novice Programmers’ Mental Models of
Programming Concepts (Doctoral dissertation, University of Strathclyde).
Cited in 1.4.3, and 7.1.9

[22] Etemad, E. and Atkins, T. 2022. Selectors Level 4. W3C:
https://www.w3.org/TR/selectors/. Accessed: 2024-07-31.
Cited in 1.4.3

[23] Berners-Lee, T. Principles of Design:
https://www.w3.org/DesignIssues/Principles.html. Accessed: 2024-07-31.
Cited in 1.4.4

Bibliography

303 /324

https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1038/scientificamerican0519-85
https://doi.org/10.1038/scientificamerican0519-85
https://doi.org/10.1038/scientificamerican0519-85
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1145/344949.344959
https://doi.org/10.1109/HCC.2002.1046337
https://doi.org/10.1109/HCC.2002.1046337
https://doi.org/10.1109/HCC.2002.1046337
https://doi.org/10.1145/567067.567069
https://doi.org/10.1145/567067.567069
https://doi.org/10.1145/567067.567069

[24] Kesteren, A. van and Stachowiak, M. 2007. HTML Design Principles. W3C:
https://www.w3.org/TR/html-design-principles/.
Cited in 1.4.4

[25] Verou, L. and Moon, S. Web Platform Design Principles. W3C:
https://www.w3.org/TR/design-principles/. Accessed: 2024-07-31.
Cited in 1.4.4

[26] Norman, D.A. 1983. Design principles for human-computer interfaces. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (New York, NY,
USA, Dec. 1983), 1–10. 10.1145/800045.801571.
Cited in 1.4.4

[27] Benson, E. and Karger, D.R. 2014. End-users publishing structured information
on the Web: An observational study of what, why, and how. ACM CHI Conference
on Human Factors in Computing Systems (2014), 1265–1274.

10.1145/2556288/2557036.
Cited in 2.1.3, 3.1, 3.2.1, 3.2.1, 3.3, 4.1, 4.4.2, 6.2, and 10.1.3

[28] Jekyll • Simple, blog-aware, static sites: https://jekyllrb.com/. Accessed: 2024-07-22.
Cited in 2.1.4, and 3.2.1

[29] Leatherman, Z. Eleventy is a simpler static site generator: https://www.11ty.dev/.
Accessed: 2024-07-22.
Cited in 2.1.4

[30] Google Inc. Google Sheets: Online Spreadsheets & Templates:
https://sheets.google.com/. Accessed: 2024-07-22.
Cited in 2.2, and 2.2

[31] Coda Project, Inc. Coda: Your all-in-one collaborative workspace: https://coda.io/.
Accessed: 2023-09-15.
Cited in 2.2, 2.2, 2.2, and 9.2.2

Bibliography

304 /324

https://doi.org/10.1145/800045.801571
https://doi.org/10.1145/800045.801571
https://doi.org/10.1145/800045.801571
https://doi.org/10.1145/2556288/2557036
https://doi.org/10.1145/2556288/2557036
https://doi.org/10.1145/2556288/2557036

[32] Bakke, E. and Karger, D.R. 2016. Expressive Query Construction through Direct
Manipulation of Nested Relational Results. Proceedings of the 2016 International
Conference on Management of Data (New York, NY, USA, Jun. 2016), 1377–1392.

10.1145/2882903.2915210.
Cited in 2.2, 2.2, 2.2, 2.3, 4.2.2, 4.7, 4.8.4, and 9.4.7

[33] Chang, K.S.-P. and Myers, B.A. 2014. Creating Interactive Web Data Applications
with Spreadsheets. Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology (New York, NY, USA, 2014), 87–96.

10.1145/2642918.2647371.
Cited in 2.2, 2.2, 2.4, 3.2, 3.2, and 3.2.1

[34] Chang, K.S.-P. and Myers, B.A. 2016. Using and Exploring Hierarchical Data in
Spreadsheets. Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (New York, NY, USA, May 2016), 2497–2507.

10.1145/2858036.2858430.
Cited in 2.2, 2.4, 3.2, and 4.2.1

[35] Bakke, E., Karger, D. and Miller, R. 2011. A spreadsheet-based user interface for
managing plural relationships in structured data. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New York, NY, USA, May
2011), 2541–2550. 10.1145/1978942.1979313.
Cited in 2.2, and 2.3

[36] Burnett, M., Atwood, J., Djang, R.W., Reichwein, J., Gottfried, H. and Yang, S.
2001. Forms/3: A first-order visual language to explore the boundaries of the
spreadsheet paradigm. Journal of Functional Programming. 11, (2001), 155–206.
Cited in 2.2, 2.2, and 4.1

[37] Lewis, C. 1990. NoPumpG: creating interactive graphics with spreadsheet
machinery. Visual Programming Environments: Paradigms and Systems. (1990), 526–
546.
Cited in 2.2

Bibliography

305 /324

https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2858036.2858430
https://doi.org/10.1145/2858036.2858430
https://doi.org/10.1145/2858036.2858430
https://doi.org/10.1145/1978942.1979313
https://doi.org/10.1145/1978942.1979313
https://doi.org/10.1145/1978942.1979313

[38] Wilde, N. and Lewis, C. 1990. Spreadsheet-based interactive graphics: from
prototype to tool. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (New York, NY, USA, Mar. 1990), 153–160.

10.1145/97243.97268.
Cited in 2.2

[39] Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R.,
Shen, W. and Goldberg-Kidon, J. 2010. Google fusion tables: web-centered data
management and collaboration. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data (2010), 1061–1066.
Cited in 2.2, and 2.3

[40] Benson, E., Zhang, A.X. and Karger, D.R. 2014. Spreadsheet driven web
applications. Proceedings of the 27th annual ACM symposium on user interface
software and technology (Honolulu, Hawaii, USA, 2014), 97–106.

10.1145/2642918.2647387.
Cited in 2.2, 2.4, 2.5, 3.2, 3.2, 3.2.1, and 6.1

[41] Fu, Y., Ong, K.W., Papakonstantinou, Y. and Petropoulos, M. 2011. The SQL-
based all-declarative FORWARD web application development framework. CIDR
(2011), 69–78.
Cited in 2.3, and 2.5

[42] Bakke, E. 2022. Expressive Query Construction through Direct Manipulation of Nested
Relational Results (Doctoral dissertation, Massachusetts Institute of Technology).
Cited in 2.3

[43] Qian, L., LeFevre, K. and Jagadish, H.V. 2010. CRIUS: user-friendly database
design. Proc. VLDB Endow. 4, (Nov. 2010), 81–92. 10.14778/1921071.1921075.
Cited in 2.3

[44] Ceri, S., Fraternali, P. and Bongio, A. 2000. Web Modeling Language (WebML): a
modeling language for designing Web sites. Computer Networks. 33, (2000), 137–
157.
Cited in 2.3, and 6.2

Bibliography

306 /324

https://doi.org/10.1145/97243.97268
https://doi.org/10.1145/97243.97268
https://doi.org/10.1145/97243.97268
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.14778/1921071.1921075
https://doi.org/10.14778/1921071.1921075
https://doi.org/10.14778/1921071.1921075

[45] Zloof, M.M. 1975. Query-by-example: the invocation and definition of tables and
forms. Proceedings of the 1st International Conference on Very Large Data Bases
(1975), 1–24.
Cited in 2.3

[46] Benzi, F., Maio, D. and Rizzi, S. 1999. VISIONARY: a viewpoint-based visual
language for querying relational databases. Journal of Visual Languages &
Computing. 10, (1999), 117–145.
Cited in 2.3

[47] Murray, N., Paton, N. and Goble, C. 1998. Kaleidoquery: a visual query language
for object databases. Proceedings of the working conference on Advanced visual
interfaces (1998), 247–257.
Cited in 2.3

[48] Choobineh, J., Mannino, M.V. and Tseng, V.P. 1992. A form-based approach for
database analysis and design. Communications of the ACM. 35, (1992), 108–120.
Cited in 2.3

[49] Embley, D.W. 1989. NFQL: the natural forms query language. ACM Transactions
on Database Systems (TODS). 14, (1989), 168–211.
Cited in 2.3

[50] Mitchell, K.J. and Kennedy, J.B. 1996. DRIVE: an environment for the organised
construction of user-interfaces to databases. Proceedings of the 1996 international
conference on Interfaces to Databases (1996), 5–5.
Cited in 2.3

[51] Jagadish, H.V., Chapman, A., Elkiss, A., Jayapandian, M., Li, Y., Nandi, A. and Yu,
C. 2007. Making database systems usable. Proceedings of the 2007 ACM SIGMOD
international conference on Management of data (New York, NY, USA, Jun. 2007),
13–24. 10.1145/1247480.1247483.
Cited in 2.3, 2.4, 4.8.6, and 6.1

[52] Yang, F., Gupta, N., Botev, C., Churchill, E.F., Levchenko, G. and
Shanmugasundaram, J. 2008. WYSIWYG development of data driven web
applications. Proceedings of the VLDB Endowment. 1, (2008), 163–175.

10.14778/1453856.1453879.
Cited in 2.3, 2.4, and 6.2

Bibliography

307 /324

https://doi.org/10.1145/1247480.1247483
https://doi.org/10.1145/1247480.1247483
https://doi.org/10.1145/1247480.1247483
https://doi.org/10.14778/1453856.1453879
https://doi.org/10.14778/1453856.1453879
https://doi.org/10.14778/1453856.1453879

[53] Bhatia, G., Fu, Y., Kowalczykowski, K., Ong, K.W., Zhao, K.K., Deutsch, A. and
Papakonstantinou, Y. 2009. FORWARD : Design Specification Techniques for
Do-It-Yourself Application Platforms. Proceedings of the 12th International
Workshop on the Web and Databases (WebDB’09). 50, (2009), 2008–2009.
Cited in 2.3

[54] Kowalzcykowski, K., Deutsch, A., Ong, K.W., Papakonstantinou, Y., Zhao, K.K.
and Petropoulos, M. 2009. Do-It-Yourself database-driven web applications.
Proceedings of the 4th Biennial Conference on Innovative Data Systems Research
(CIDR’09) (2009).
Cited in 2.3, 2.4, and 6.1

[55] Karger, D.R., Ostler, S. and Lee, R. 2009. The web page as a WYSIWYG end-user
customizable database-backed information management application. Proceedings of
the 22nd annual ACM symposium on User interface software and technology - UIST ’09
(New York, New York, USA, 2009), 257. 10.1145/1622176.1622223.
Cited in 2.4, 2.5, 3.2, 3.2.1, and 6.2

[56] Google Inc. AngularJS — Superheroic JavaScript MVW Framework:
https://angularjs.org/. Accessed: 2024-07-22.
Cited in 2.5, and 4.2.3

[57] You, E. Vue.Js - The Progressive JavaScript Framework: https://vuejs.org/. Accessed:
2024-07-22.
Cited in 2.5, and 4.2.3

[58] Oney, S., Myers, B. and Brandt, J. 2012. ConstraintJS : Programming Interactive
Behaviors for the Web by Integrating Constraints and States. Proceedings of the
25th annual ACM symposium on User interface software and technology (New York,
NY, USA, Oct. 2012), 229–238. 10.1145/2380116.2380146.
Cited in 2.5

[59] Kay, M. 2021. XSL Transformations (XSLT) Version 2.0 (Second Edition):
https://www.w3.org/TR/xslt20/. Accessed: 2024-08-30.
Cited in 2.5.2

Bibliography

308 /324

https://doi.org/10.1145/1622176.1622223
https://doi.org/10.1145/1622176.1622223
https://doi.org/10.1145/1622176.1622223
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/2380116.2380146
https://doi.org/10.1145/2380116.2380146

[60] Benson, E.E. and Karger, D.D.R. 2013. Cascading tree sheets and recombinant
HTML: better encapsulation and retargeting of web content. … International
Conference on World Wide Web. (2013), 107–117.
Cited in 2.5.2

[61] Cafarella, M.J., Halevy, A. and Madhavan, J. 2011. Structured data on the web.
Communications of the ACM. 54, (2011), 72–79.
Cited in 2.6, and 3.2.2

[62] HTML+RDFa 1.1 — Second Edition. W3C: https://www.w3.org/TR/html-rdfa/.
Accessed: 2023-09-15.
Cited in 2.6, 3.1.1, 3.2.2, 3.3.3, 3.3.3, and 3.3.3

[63] Microdata — HTML Living Standard. WHATWG:
https://html.spec.whatwg.org/multipage/microdata.html. Accessed: 2023-09-15.
Cited in 2.6, 3.2.2, 3.3.3, and 3.3.3

[64] Berners-Lee, T., Hendler, J., Lassila, O., and others 2001. The semantic web.
Scientific American. 284, (2001), 28–37.
Cited in 2.6, and 3.2.2

[65] Khalili, A. and Auer, S. 2013. WYSIWYM Authoring of Structured Content
Based on Schema.Org. Web Information Systems Engineering – WISE 2013 (Berlin,
Heidelberg, 2013), 425–438. 10.1007/978-3-642-41154-0_32.
Cited in 2.6

[66] Du Boulay, B. 1986. Some difficulties of learning to program. Journal of Educational
Computing Research. 2, (1986), 57–73.
Cited in 2.7

[67] Ma, L., Ferguson, J., Roper, M. and Wood, M. 2011. Investigating and improving
the models of programming concepts held by novice programmers. Computer
Science Education. 21, (2011), 57–80.
Cited in 2.7, 4.4.1, 7.2.1, and 7.2.6

[68] Miller, L.A. 1974. Programming by non-programmers. International Journal of
Man-Machine Studies. 6, (1974), 237–260. 10.1016/S0020-7373(74)80004-0.
Cited in 2.7, and 4.4.1

Bibliography

309 /324

https://doi.org/10.1007/978-3-642-41154-0_32
https://doi.org/10.1007/978-3-642-41154-0_32
https://doi.org/10.1007/978-3-642-41154-0_32
https://doi.org/10.1016/S0020-7373(74)80004-0
https://doi.org/10.1016/S0020-7373(74)80004-0
https://doi.org/10.1016/S0020-7373(74)80004-0

[69] Pane, J.F., Myers, B.A., and others 2001. Studying the language and structure in
non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies. 54, (2001), 237–264. 10.1006/ijhc.2000.0410.
Cited in 2.7, 4.4.1, 7.2.1, 7.2.4, and 7.2.4

[70] Myers, B.A., Ko, A.J., Scaffidi, C., Oney, S., Yoon, Y., Chang, K., Kery, M.B. and
Li, T.J.-J. 2017. Making End User Development More Natural. New Perspectives in
End-User Development. F. Paternò and V. Wulf, eds. Springer International
Publishing. 1–22. 10.1007/978-3-319-60291-2_1.
Cited in 2.7, 3.1, and 4.1

[71] Myers, B.A., Ko, A.J., Park, S.Y., Stylos, J., LaToza, T.D. and Beaton, J. 2008. More
natural end-user software engineering. Proceedings of the 4th international workshop
on End-user software engineering (New York, NY, USA, May 2008), 30–34.

10.1145/1370847.1370854.
Cited in 2.7, and 3.1

[72] Rosson, M.B., Ballin, J. and Rode, J. 2005. Who, what, and how: A survey of
informal and professional web developers. Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on (2005), 199–206.
Cited in 3.1

[73] Shneiderman, B. 1993. Direct manipulation: a step beyond programming
languages. Sparks of Innovation in Human-Computer Interaction. 17, (1993), 1993.
Cited in 3.1.1

[74] Birbeck, M. and McCarron, S. CURIE Syntax 1.0. W3C:
https://www.w3.org/TR/curie/. Accessed: 2024-08-03.
Cited in 3.3.3

[75] Panko, R.R. 2013. The cognitive science of spreadsheet errors: Why thinking is
bad. Proceedings of the Annual Hawaii International Conference on System Sciences
(2013). 10.1109/HICSS.2013.513.
Cited in 3.3.5, and 4.5.4

[76] Green, T.R.G. and Petre, M. 1996. Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages
& Computing. 7, (Jun. 1996), 131–174. 10.1006/jvlc.1996.0009.
Cited in 3.5.1, 4.2.4, 5.1, and 10.4

Bibliography

310 /324

https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1006/ijhc.2000.0410
https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1007/978-3-319-60291-2_1
https://doi.org/10.1145/1370847.1370854
https://doi.org/10.1145/1370847.1370854
https://doi.org/10.1145/1370847.1370854
https://doi.org/10.1109/HICSS.2013.513
https://doi.org/10.1109/HICSS.2013.513
https://doi.org/10.1109/HICSS.2013.513
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009

[77] Sporny, M., Longley, D., Kellogg, G., Lanthaler, M. and Lindström, N. 2020.
JSON-LD 1.1. W3C: https://www.w3.org/TR/json-ld/.
Cited in 3.5.5

[78] Galassi, G. and Mattessich, R.V. 2014. Some clarification to the evolution of the
electronic spreadsheet. Journal of Emerging Technologies in Accounting. 11, (2014),
99–104.
Cited in 4.1, and 4.2

[79] Pratt, V.R. 1973. Top down operator precedence. Proceedings of the 1st annual ACM
SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’73
(Boston, Massachusetts, 1973), 41–51. 10.1145/512927.512931.
Cited in 4.1, and 4.6.1

[80] Chang, K.S.-P. and Myers, B.A. 2017. Gneiss: spreadsheet programming using
structured web service data. Journal of Visual Languages & Computing. 39, (Apr.
2017), 41–50. 10.1016/j.jvlc.2016.07.004.
Cited in 4.2.1, and 6.1

[81] Svelte • Cybernetically enhanced web apps: https://svelte.dev/. Accessed: 2024-08-
05.
Cited in 4.2.3

[82] Kodosky, J. 2020. LabVIEW. Proc. ACM Program. Lang. 4, HOPL (Jun. 2020),
78:1-78:54. 10.1145/3386328.
Cited in 4.2.4

[83] Wang, G., Yang, S. and Han, Y. 2009. Mashroom: end-user mashup programming
using nested tables. Proceedings of the 18th international conference on World wide
web (New York, NY, USA, Apr. 2009), 861–870. 10.1145/1526709.1526825.
Cited in 4.2.4

[84] Mase, M.B. and Nel, L. 2022. Common Code Writing Errors Made by Novice
Programmers: Implications for the Teaching of Introductory Programming. ICT
Education (Cham, 2022), 102–117. 10.1007/978-3-030-95003-3_7.
Cited in 4.5.4

Bibliography

311 /324

https://doi.org/10.1145/512927.512931
https://doi.org/10.1145/512927.512931
https://doi.org/10.1145/512927.512931
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1016/j.jvlc.2016.07.004
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386328
https://doi.org/10.1145/1526709.1526825
https://doi.org/10.1145/1526709.1526825
https://doi.org/10.1145/1526709.1526825
https://doi.org/10.1007/978-3-030-95003-3_7
https://doi.org/10.1007/978-3-030-95003-3_7
https://doi.org/10.1007/978-3-030-95003-3_7

[85] 154, I. 2019. ISO standard. ISO 8601-1:2019 - Date and time — Representations
for information interchange — Part 1: Basic rules:
https://www.iso.org/standard/70907.html. Accessed: 2022-09-13.
Cited in 4.5.7, 9.5, and 9.5

[86] Codd, E.F. 1972. Further Normalization of the Data Base Relational Model. Data
Base Systems. 6, (1972), 33–64.
Cited in 4.7

[87] Broman, K.W. and Woo, K.H. 2018. Data Organization in Spreadsheets. The
American Statistician. 72, (Jan. 2018), 2–10. 10.1080/00031305.2017.1375989.
Cited in 4.7

[88] Scaffidi, C. and Shaw, M. 2010. Chapter 21 - Reuse in the world of end user
programmers. No Code Required. A. Cypher, M. Dontcheva, T. Lau, and J. Nichols,
eds. Morgan Kaufmann. 407–421. 10.1016/B978-0-12-381541-5.00021-3.
Cited in 4.8.6, 9.8.3, and 10.4

[89] Norman, D. 1986. Cognitive Engineering. User Centered System Design: New
Perspectives on Human-Computer Interaction. 31–61. 10.1201/b15703-3.
Cited in 5.1

[90] Carter, S., Whitehead, E.J., Goland, Y.Y., Faizi, A. and Jensen, D. 1999. HTTP
Extensions for Distributed Authoring – WEBDAV. RFC 2518. Internet
Engineering Task Force: https://datatracker.ietf.org/doc/rfc2518. Accessed: 2024-08-
12. 10.17487/RFC2518.
Cited in 5.2

[91] Hernández, L.O. and Pegah, M. 2003. WebDAV: what it is, what it does, why you
need it. Proceedings of the 31st annual ACM SIGUCCS fall conference (New York,
NY, USA, Sep. 2003), 249–254. 10.1145/947469.947535.
Cited in 5.2

[92] Dusseault, L.B. 2003. WebDAV: Next Generation Collaborative Web Authoring.
Prentice Hall Professional Technical Reference.
Cited in 5.2

Bibliography

312 /324

https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.1080/00031305.2017.1375989
https://doi.org/10.1016/B978-0-12-381541-5.00021-3
https://doi.org/10.1016/B978-0-12-381541-5.00021-3
https://doi.org/10.1016/B978-0-12-381541-5.00021-3
https://doi.org/10.1201/b15703-3
https://doi.org/10.1201/b15703-3
https://doi.org/10.1201/b15703-3
https://doi.org/10.17487/RFC2518
https://doi.org/10.17487/RFC2518
https://doi.org/10.17487/RFC2518
https://doi.org/10.1145/947469.947535
https://doi.org/10.1145/947469.947535
https://doi.org/10.1145/947469.947535

[93] Dusseault, L. 2007. HTTP extensions for web distributed authoring and
versioning (WebDAV). RFC 4918. IETF: http://tools.ietf.org/rfc/rfc4918.txt.
Cited in 5.2

[94] Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A.,
Aboulnaga, A. and Berners-Lee, T. 2016. A Demonstration of the Solid Platform
for Social Web Applications. Proceedings of the 25th International Conference
Companion on World Wide Web (Republic, Canton of Geneva, CHE, Apr. 2016),
223–226. 10.1145/2872518.2890529.
Cited in 5.2

[95] Sambra, A.V., Mansour, E., Hawke, S., Zereba, M., Greco, N., Ghanem, A.,
Zagidulin, D., Aboulnaga, A. and Berners-Lee, T. Solid: A Platform for
Decentralized Social Applications Based on Linked Data.
Cited in 5.2

[96] Alrashed, T., Almahmoud, J., Zhang, A.X. and Karger, D.R. 2020. ScrAPIr:
Making Web Data APIs Accessible to End Users. Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu HI USA, Apr.
2020), 1–12. 10.1145/3313831.3376691.
Cited in 5.2, and 5.2

[97] Alrashed, T., Verou, L. and Karger, D.R. 2021. Shapir: Standardizing and
Democratizing Access to Web APIs. The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event USA, Oct. 2021), 1282–1304.

10.1145/3472749.3474822.
Cited in 5.2, 5.2, and 7.4

[98] Schema.Org - Schema.Org: https://schema.org/. Accessed: 2024-07-29.
Cited in 5.2, and 7.4

[99] URL Pattern Standard. WHATWG: https://urlpattern.spec.whatwg.org/.
Accessed: 2024-08-06.
Cited in 5.3.3

[100] Fetch Standard. WHATWG: https://fetch.spec.whatwg.org/. Accessed: 2024-08-
06.
Cited in 5.3.4, and 10.1.5

Bibliography

313 /324

https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/2872518.2890529
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/3472749.3474822
https://doi.org/10.1145/3472749.3474822
https://doi.org/10.1145/3472749.3474822

[101] Verou, L. 2013. Dabblet: A visual IDE for rapid prototyping of client-side web
development (Bachelor’s thesis, Athens University of Economics & Business).
Cited in 5.3.4

[102] Freed, N. and Borenstein, N.S. 1996. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. RFC 2046. Internet Engineering Task Force:
https://datatracker.ietf.org/doc/rfc2046. Accessed: 2024-08-06.

10.17487/RFC2046.
Cited in 5.5.2

[103] Preston-Werner, T. TOML: Tom’s Obvious Minimal Language: https://toml.io/.
Accessed: 2024-08-06.
Cited in 5.5.2

[104] Nottingham, M. 2019. Well-Known Uniform Resource Identifiers (URIs). RFC
8615. Internet Engineering Task Force: https://datatracker.ietf.org/doc/rfc8615.
Accessed: 2024-08-06. 10.17487/RFC8615.
Cited in 5.6.5

[105] Quan, D., Huynh, D. and Karger, D.R. 2003. Haystack: A Platform for
Authoring End User Semantic Web Applications. The Semantic Web - ISWC 2003
(Berlin, Heidelberg, 2003), 738–753. 10.1007/978-3-540-39718-2_47.
Cited in 6.2

[106] Pane, J.F., Myers, B.A. and Miller, L.B. 2002. Using HCI techniques to design a
more usable programming system. Proceedings IEEE 2002 Symposia on Human
Centric Computing Languages and Environments (Sep. 2002), 198–206.

10.1109/HCC.2002.1046372.
Cited in 6.3.2

[107] Salvaneschi, G., Proksch, S., Amann, S., Nadi, S. and Mezini, M. 2017. On the
Positive Effect of Reactive Programming on Software Comprehension: An
Empirical Study. IEEE Transactions on Software Engineering. 43, (2017), 1–1.

10.1109/TSE.2017.2655524.
Cited in 6.3.2

Bibliography

314 /324

https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC8615
https://doi.org/10.17487/RFC8615
https://doi.org/10.17487/RFC8615
https://doi.org/10.1007/978-3-540-39718-2_47
https://doi.org/10.1007/978-3-540-39718-2_47
https://doi.org/10.1007/978-3-540-39718-2_47
https://doi.org/10.1109/HCC.2002.1046372
https://doi.org/10.1109/HCC.2002.1046372
https://doi.org/10.1109/HCC.2002.1046372
https://doi.org/10.1109/TSE.2017.2655524
https://doi.org/10.1109/TSE.2017.2655524
https://doi.org/10.1109/TSE.2017.2655524

[108] Salvaneschi, G., Amann, S., Proksch, S. and Mezini, M. 2014. An empirical study
on program comprehension with reactive programming. Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
FSE 2014. (2014), 564–575. 10.1145/2635868.2635895.
Cited in 6.3.2

[109] Greif, S. and Verou, L. 2023. State of HTML 2023. Devographics. (2023).
https://2023.stateofhtml.com/. Accessed: 2024-07-30.
Cited in 6.4.2, and 10.6.2

[110] Satyanarayan, A., Russell, R., Hoffswell, J. and Heer, J. 2016. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization. IEEE
Transactions on Visualization and Computer Graphics. 22, (2016), 659–668.
Cited in 6.5.4, and 6.5.4

[111] HTML Standard. WHATWG: https://html.spec.whatwg.org/multipage/.
Accessed: 2024-07-28.
Cited in 7.1.1

[112] Jackson, D. 2015. Towards a theory of conceptual design for software. 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!) (New York, NY, USA, Oct. 2015), 282–
296. 10.1145/2814228.2814248.
Cited in 7.1.1

[113] Kelleher, C. and Pausch, R. 2005. Lowering the Barriers to Programming : a
survey of programming environments and languages for novice programmers.
Science. 37, (2005), 83–137. 10.1145/1089733.1089734.
Cited in 7.1.9

[114] Myers, B.A., Ko, A.J., Latoza, T.D. and Yoon, Y. 2016. Programmers Are Users
Too: Human-centered methods for improving programming tools. Computer. 49,
(2016), 44–52. 10.1109/MC.2016.200.
Cited in 7.2.1, and 7.2.3

[115] Brooke, J. 1996. SUS: A “Quick and Dirty” Usability Scale. Usability Evaluation
in Industry. 189, (1996), 4–7. 10.1201/9781498710411-35.
Cited in 7.2.3, 7.2.7, 9.1.1, 9.7.1, and 9.8.7

Bibliography

315 /324

https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1145/2635868.2635895
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781498710411-35
https://doi.org/10.1201/9781498710411-35

[116] Sauro, J. 2011. A practical guide to the System Usability Scale: Background,
benchmarks & best practices. Measuring Usability LLC.
Cited in 7.2.7

[117] Lewis, J.R. and Sauro, J. 2009. The factor structure of the system usability scale.
International conference on human centered design (2009), 94–103.
Cited in 7.2.7

[118] Alrashed, T., Verou, L. and Karger, D. 2022. Wikxhibit: Using HTML and
Wikidata to Author Applications that Link Data Across the Web. Proceedings of
the 35th Annual ACM Symposium on User Interface Software and Technology (New
York, NY, USA, Oct. 2022), 1–15. 10.1145/3526113.3545706.
Cited in 7.5

[119] Same Origin Policy - Web Security:
https://www.w3.org/Security/wiki/Same_Origin_Policy. Accessed: 2024-08-28.
Cited in 8.1.3, and 10.1.5

[120] Barth, A. 2011. The Web Origin Concept. RFC 6454. Internet Engineering Task
Force: https://datatracker.ietf.org/doc/rfc6454. Accessed: 2024-08-28.

10.17487/RFC6454.
Cited in 8.1.3, and 10.1.5

[121] Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M.L., Minsky, M.,
Papert, A. and Silverman, B. 2020. History of Logo. Proc. ACM Program. Lang. 4,
HOPL (Jun. 2020), 79:1-79:66. 10.1145/3386329.
Cited in 8.2.2, and 8.2.2

[122] Cicileo, F.R. 2018. Mavo Create : a WYSIWYG editor for Mavo (Master’s thesis,
Massachusetts Institute of Technology).
Cited in 9.1

[123] Li, I., Dey, A. and Forlizzi, J. 2010. A Stage-Based Model of Personal Informatics
Systems. ACM CHI Conference on Human Factors in Computing Systems (2010).
Cited in 9.1.1, 9.1.1, 9.2.1, 9.2.1, 9.2.1, 9.4.8, and 9.8.7

Bibliography

316 /324

https://doi.org/10.1145/3526113.3545706
https://doi.org/10.1145/3526113.3545706
https://doi.org/10.1145/3526113.3545706
https://doi.org/10.17487/RFC6454
https://doi.org/10.17487/RFC6454
https://doi.org/10.17487/RFC6454
https://doi.org/10.1145/3386329
https://doi.org/10.1145/3386329
https://doi.org/10.1145/3386329

[124] Choe, E.K., Lee, N.B., Lee, B., Pratt, W. and Kientz, J.A. 2014. Understanding
quantified-selfers’ practices in collecting and exploring personal data. ACM CHI
Conference on Human Factors in Computing Systems (2014), 1143–1152.

10.1145/2556288.2557372.
Cited in 9.1.1, 9.1.1, and 9.2.2

[125] Lee, J.H., Schroeder, J. and Epstein, D.A. 2021. Understanding and supporting
self-tracking app selection. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies. 5, (2021). 10.1145/3494980.
Cited in 9.1.1, 9.1.1, 9.2.1, 9.2.1, 9.2.1, 9.3, and 9.8.7

[126] Oh, J. and Lee, U. 2015. Exploring UX issues in quantified self technologies. 2015
8th International Conference on Mobile Computing and Ubiquitous Networking,
ICMU 2015. (2015), 53–59. 10.1109/ICMU.2015.7061028.
Cited in 9.1.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, and 9.8.7

[127] Potapov, K. and Marshall, P. 2020. LifeMosaic: Co-design of a personal
informatics tool for youth. Proceedings of the Interaction Design and Children
Conference, IDC 2020. (2020), 519–531. 10.1145/3392063.3394429.
Cited in 9.1.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, and 9.8.7

[128] Kim, N.W., Wang, A., Im, H., Gajos, K., Riche, N.H. and Pfister, H. 2019.
Dataselfie: Empowering people to design personalized visuals to represent their
data. Conference on Human Factors in Computing Systems - Proceedings. (2019), 1–
12. 10.1145/3290605.3300309.
Cited in 9.1.1, 9.2.1, 9.2.1, 9.2.1, and 9.8.7

[129] Ayobi, A., Sonne, T., Marshall, P. and Cox, A.L. 2018. Flexible and mindful self-
tracking: Design implications from paper bullet journals. Conference on Human
Factors in Computing Systems - Proceedings. 2018-April, (2018), 1–14.

10.1145/3173574.3173602.
Cited in 9.1.1, 9.2.1, 9.2.1, and 9.3

[130] Abtahi, P., Ding, V., Yang, A.C., Bruzzese, T., Romanos, A.B., Murnane, E.L.,
Follmer, S. and Landay, J.A. 2020. Understanding Physical Practices and the Role
of Technology in Manual Self-Tracking. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies. 4, (2020). 10.1145/3432236.
Cited in 9.1.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, 9.2.1, and 9.3

Bibliography

317 /324

https://doi.org/10.1145/2556288.2557372
https://doi.org/10.1145/2556288.2557372
https://doi.org/10.1145/2556288.2557372
https://doi.org/10.1145/3494980
https://doi.org/10.1145/3494980
https://doi.org/10.1145/3494980
https://doi.org/10.1109/ICMU.2015.7061028
https://doi.org/10.1109/ICMU.2015.7061028
https://doi.org/10.1109/ICMU.2015.7061028
https://doi.org/10.1145/3392063.3394429
https://doi.org/10.1145/3392063.3394429
https://doi.org/10.1145/3392063.3394429
https://doi.org/10.1145/3290605.3300309
https://doi.org/10.1145/3290605.3300309
https://doi.org/10.1145/3290605.3300309
https://doi.org/10.1145/3173574.3173602
https://doi.org/10.1145/3173574.3173602
https://doi.org/10.1145/3173574.3173602
https://doi.org/10.1145/3432236
https://doi.org/10.1145/3432236
https://doi.org/10.1145/3432236

[131] Lazar, A., Koehler, C., Tanenbaum, T.J. and Nguyen, D.H. 2015. Why we use and
abandon smart devices. Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (New York, NY, USA, Sep. 2015), 635–
646. 10.1145/2750858.2804288.
Cited in 9.1.1

[132] Clawson, J., Pater, J.A., Miller, A.D., Mynatt, E.D. and Mamykina, L. 2015. No
longer wearing: investigating the abandonment of personal health-tracking
technologies on craigslist. Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (New York, NY, USA, Sep.
2015), 647–658. 10.1145/2750858.2807554.
Cited in 9.1.1

[133] Epstein, D.A., Caraway, M., Johnston, C., Ping, A., Fogarty, J. and Munson, S.A.
2016. Beyond Abandonment to Next Steps: Understanding and Designing for
Life after Personal Informatics Tool Use. Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (New York, NY, USA, May 2016), 1109–
1113. 10.1145/2858036.2858045.
Cited in 9.1.1

[134] Choe, E.K., Abdullah, S., Rabbi, M., Thomaz, E., Epstein, D.A., Cordeiro, F.,
Kay, M., Abowd, G.D., Choudhury, T., Fogarty, J., Lee, B., Matthews, M. and
Kientz, J.A. 2017. Semi-Automated Tracking: A Balanced Approach for Self-
Monitoring Applications Characterizing Semi-Automated Tracking. (2017).
http://quantifiedself.com. 10.1109/MPRV.2017.18.
Cited in 9.1.1, 9.9.7, and A.1.2

[135] Li, I., Dey, A.K. and Forlizzi, J. 2012. Using context to reveal factors that affect
physical activity. ACM Transactions on Computer-Human Interaction. 19, (2012).

10.1145/2147783.2147790.
Cited in 9.1.1

[136] Korotitsch, W.J. and Nelson-Gray, R.O. 1999. An Overview of Self-Monitoring
in Assessment and Treatment. Psychological Assessment. 11, (1999), 415–425.
Cited in 9.1.1

Bibliography

318 /324

https://doi.org/10.1145/2750858.2804288
https://doi.org/10.1145/2750858.2804288
https://doi.org/10.1145/2750858.2804288
https://doi.org/10.1145/2750858.2807554
https://doi.org/10.1145/2750858.2807554
https://doi.org/10.1145/2750858.2807554
https://doi.org/10.1145/2858036.2858045
https://doi.org/10.1145/2858036.2858045
https://doi.org/10.1145/2858036.2858045
https://doi.org/10.1109/MPRV.2017.18
https://doi.org/10.1109/MPRV.2017.18
https://doi.org/10.1109/MPRV.2017.18
https://doi.org/10.1145/2147783.2147790
https://doi.org/10.1145/2147783.2147790
https://doi.org/10.1145/2147783.2147790

[137] Choe, E.K., Lee, B., Kay, M., Pratt, W. and Kientz, J.A. 2015. SleepTight: Low-
burden, self-monitoring technology for capturing and reflecting on sleep
behaviors. UbiComp 2015 - Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. (2015), 121–132.

10.1145/2750858.2804266.
Cited in 9.1.1

[138] Eveleth, R. 2014. How self-tracking apps exclude women. The Atlantic. 15, (2014).
Cited in 9.1.1, 9.2.1, and 9.2.1

[139] Ayobi, A., Marshall, P. and Cox, A.L. 2020. Trackly: A Customisable and
Pictorial Self-Tracking App to Support Agency in Multiple Sclerosis Self-Care.
Conference on Human Factors in Computing Systems - Proceedings. (2020), 1–15.

10.1145/3313831.3376809.
Cited in 9.2.1, 9.2.1, and 9.2.1

[140] Luo, Y., Liu, P. and Choe, E.K. 2019. Co-designing food trackers with dietitians:
Identifying design opportunities for food tracker customization. ACM CHI
Conference on Human Factors in Computing Systems (2019).

10.1145/3290605.3300822.
Cited in 9.2.1, 9.2.1, 9.2.1, 9.2.1, and 9.3

[141] Kim, Y.-H., Ho Jeon, J., Lee, B., Choe, E.K., Jeon, J.H. and Seo, J. 2017.
OmniTrack: A Flexible Self-Tracking Approach Leveraging Semi-Automated
Tracking. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, Article67
(2017), 67. 10.1145/3130930.
Cited in 9.2.1, 9.2.1, 9.4.4, and 9.9.4

[142] Epstein, D.A. 2023. This Watchface Fits with my Tattoos : Investigating
Customisation Needs and Preferences in Personal Tracking. (2023).

10.1145/3544548.3580955.
Cited in 9.2.1, and 9.3

[143] Epstein, D.A., Lee, N.B., Kang, J.H., Agapie, E., Schroeder, J., Pina, L.R.,
Fogarty, J., Kientz, J.A. and Munson, S.A. 2017. Examining menstrual tracking to
inform the design of personal informatics tools. ACM CHI Conference on Human
Factors in Computing Systems (2017), 6876–6888. 10.1145/3025453.3025635.
Cited in 9.2.1

Bibliography

319 /324

https://doi.org/10.1145/2750858.2804266
https://doi.org/10.1145/2750858.2804266
https://doi.org/10.1145/2750858.2804266
https://doi.org/10.1145/3313831.3376809
https://doi.org/10.1145/3313831.3376809
https://doi.org/10.1145/3313831.3376809
https://doi.org/10.1145/3290605.3300822
https://doi.org/10.1145/3290605.3300822
https://doi.org/10.1145/3290605.3300822
https://doi.org/10.1145/3130930
https://doi.org/10.1145/3130930
https://doi.org/10.1145/3130930
https://doi.org/10.1145/3544548.3580955
https://doi.org/10.1145/3544548.3580955
https://doi.org/10.1145/3544548.3580955
https://doi.org/10.1145/3025453.3025635
https://doi.org/10.1145/3025453.3025635
https://doi.org/10.1145/3025453.3025635

[144] Bearable Ltd Bearable Symptom Tracker App | Pain & Mental Health Journal:
https://bearable.app/. Accessed: 2023-09-14.
Cited in 9.2.1, and 9.8.7

[145] Hello Code Pty Ltd Exist · Understand your behaviour: https://exist.io/. Accessed:
2023-09-14.
Cited in 9.2.1

[146] Gyecsek, D. DoEntry | Guided Journaling: https://doentry.com/. Accessed: 2023-
09-14.
Cited in 9.2.1

[147] Happy Data, LLC. Private Daily journal for short attention spans. Nomie:
https://nomie.app/. Accessed: 2023-09-14.
Cited in 9.2.1

[148] chrono.me KeepTrack: http://www.zagalaga.com/. Accessed: 2023-09-14.
Cited in 9.2.1

[149] Wang, J., O’Kane, A.A., Newhouse, N., Sethu-Jones, G.R. and De Barbaro, K.
2017. Quantified baby: Parenting and the use of a baby wearable in the wild.
Proceedings of the ACM on Human-Computer Interaction. 1, CSCW (2017), 1–19.

10.1145/3134743.
Cited in 9.2.1, 9.3.1, and A.1.3

[150] Gaunt, K., Nacsa, J. and Penz, M. 2014. Baby Lucent: Pitfalls of applying
quantified self to baby products. ACM CHI Conference on Human Factors in
Computing Systems (2014), 263–268. 10.1145/2559206.2580937.
Cited in 9.2.1, 9.3.1, and A.1.3

[151] Kientz, J.A., Arriaga, R.I., Chetty, M., Hayes, G.R., Richardson, J., Patel, S.N.
and Abowd, G.D. 2007. Grow and know: Understanding record-keeping needs
for tracking the development of young children. ACM CHI Conference on Human
Factors in Computing Systems (2007), 1351–1360. 10.1145/1240624.1240830.
Cited in 9.2.1, A.1.4, and A.1.5

Bibliography

320 /324

https://doi.org/10.1145/3134743
https://doi.org/10.1145/3134743
https://doi.org/10.1145/3134743
https://doi.org/10.1145/2559206.2580937
https://doi.org/10.1145/2559206.2580937
https://doi.org/10.1145/2559206.2580937
https://doi.org/10.1145/1240624.1240830
https://doi.org/10.1145/1240624.1240830
https://doi.org/10.1145/1240624.1240830

[152] Kientz, J.A., Arriaga, R.I. and Abowd, G.D. 2009. Baby steps: Evaluation of a
system to support record- keeping for parents of young children. ACM CHI
Conference on Human Factors in Computing Systems (2009), 1713–1722.

10.1145/1518701.1518965.
Cited in 9.2.1

[153] Suh, H., Porter, J.R., Hiniker, A. and Kientz, J.A. 2014. @BabySteps: Design and
evaluation of a system for using twitter for tracking children’s developmental
milestones. ACM CHI Conference on Human Factors in Computing Systems (2014),
2279–2288. 10.1145/2556288.2557386.
Cited in 9.2.1, and A.1.4

[154] Pina, L.R., Sien, S.W., Ward, T., Yip, J.C., Munson, S.A., Fogarty, J. and Kientz,
J.A. 2017. From personal informatics to family informatics: Understanding family
practices around health monitoring. Proceedings of the ACM Conference on
Computer Supported Cooperative Work, CSCW. (2017), 2300–2315.

10.1145/2998181.2998362.
Cited in 9.2.1

[155] Eisenberg, M. and Fischer, G. 1994. Programmable design environments:
integrating end-user programming with domain-oriented assistance. Proceedings
of the SIGCHI conference on Human factors in computing systems celebrating
interdependence - CHI ’94 (Boston, Massachusetts, United States, 1994), 431–437.

10.1145/191666.191813.
Cited in 9.2.2

[156] Prähofer, H., Hurnaus, D., Schatz, R., Wirth, C. and Mössenbö k, H. 2008.
Software support for building end-user programming environments in the
automation domain. Proceedings of the 4th international workshop on End-user
software engineering (New York, NY, USA, May 2008), 76–80.

10.1145/1370847.1370864.
Cited in 9.2.2

[157] Desolda, G., Ardito, C. and Matera, M. 2017. Empowering End Users to
Customize their Smart Environments: Model, Composition Paradigms, and
Domain-Specific Tools. ACM Transactions on Computer-Human Interaction. 24,
(Apr. 2017), 12:1-12:52. 10.1145/3057859.
Cited in 9.2.2

Bibliography

321 /324

https://doi.org/10.1145/1518701.1518965
https://doi.org/10.1145/1518701.1518965
https://doi.org/10.1145/1518701.1518965
https://doi.org/10.1145/2556288.2557386
https://doi.org/10.1145/2556288.2557386
https://doi.org/10.1145/2556288.2557386
https://doi.org/10.1145/2998181.2998362
https://doi.org/10.1145/2998181.2998362
https://doi.org/10.1145/2998181.2998362
https://doi.org/10.1145/191666.191813
https://doi.org/10.1145/191666.191813
https://doi.org/10.1145/191666.191813
https://doi.org/10.1145/1370847.1370864
https://doi.org/10.1145/1370847.1370864
https://doi.org/10.1145/1370847.1370864
https://doi.org/10.1145/3057859
https://doi.org/10.1145/3057859
https://doi.org/10.1145/3057859

[158] Airtable The platform to build next‒gen apps: https://www.airtable.com/.
Accessed: 2023-09-15.
Cited in 9.2.2

[159] typeguard, Inc. Glide: https://go.glideapps.com/. Accessed: 2023-09-15.
Cited in 9.2.2

[160] Behr, D., Meitinger, K., Braun, M. and Kaczmirek, L. 2017. Web probing -
implementing probing techniques from cognitive interviewing in web surveys with the
goal to assess the validity of survey questions (Version 1.0). GESIS - Leibniz-Institut
für Sozialwissenschaften. 10.15465/gesis-sg_en_023.
Cited in 9.3

[161] Meitinger, K. and Kunz, T. 2022. Visual Design and Cognition in List-Style
Open-Ended Questions in Web Probing. Sociological Methods & Research. (Feb.
2022), 00491241221077241. 10.1177/00491241221077241.
Cited in 9.3

[162] Keusch, F. 2014. The Influence of Answer Box Format on Response Behavior on
List-Style Open-Ended Questions. Journal of Survey Statistics and Methodology. 2,
(Sep. 2014), 305–322. 10.1093/jssam/smu007.
Cited in 9.3

[163] McNutt, A. and Chugh, R. 2021. Integrated visualization editing via
parameterized declarative templates. ACM CHI Conference on Human Factors in
Computing Systems (New York, NY, USA, 2021). 10.1145/3411764.3445356.
Cited in 9.4.8

[164] Resnick, M. and Rosenbaum, E. 2013. Designing for tinkerability. Design, make,
play. Routledge. 163–181.
Cited in 9.4.12, 9.9.1, and 10.6

[165] Luo, T. 2011. The Effects of Tinkerability on Novice Programming Skill
Acquisition. E-Learn 2011--World Conference on E-Learning in Corporate,
Government, Healthcare, and Higher Education. (2011), 742–748.
Cited in 9.4.12, 9.9.1, and 10.6

Bibliography

322 /324

https://doi.org/10.15465/gesis-sg_en_023
https://doi.org/10.15465/gesis-sg_en_023
https://doi.org/10.15465/gesis-sg_en_023
https://doi.org/10.1177/00491241221077241
https://doi.org/10.1177/00491241221077241
https://doi.org/10.1177/00491241221077241
https://doi.org/10.1093/jssam/smu007
https://doi.org/10.1093/jssam/smu007
https://doi.org/10.1093/jssam/smu007
https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/3411764.3445356

[166] Bangor, A., Kortum, P. and Miller, J. 2009. Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies. 4,
(2009), 114–123.
Cited in 9.8.7, and 9.8.7

[167] Watson, S.M. 2013. Living with Data: Personal Data Uses of the Quantified Self.
(2013), 48.
Cited in 9.9.6

[168] Liang, Z., Ploderer, B., Liu, W., Nagata, Y., Bailey, J., Kulik, L. and Li, Y. 2016.
SleepExplorer: a visualization tool to make sense of correlations between personal
sleep data and contextual factors. Personal and Ubiquitous Computing. 20, (2016),
985–1000. 10.1007/s00779-016-0960-6.
Cited in 9.9.6

[169] Daskalova, N., Kyi, E., Ouyang, K., Borem, A., Chen, S., Park, S.H., Nugent, N.
and Huang, J. 2021. Self-e: Smartphone-supported guidance for customizable
self-experimentation. Conference on Human Factors in Computing Systems -
Proceedings. (2021). 10.1145/3411764.3445100.
Cited in 9.9.6

[170] Turing, A.M. 1937. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society. s2-42,
(1937), 230–265. 10.1112/plms/s2-42.1.230.
Cited in 10.1

[171] Bhardwaj, A., Bhattacherjee, S., Chavan, A., Deshpande, A., Elmore, A.J.,
Madden, S. and Parameswaran, A.G. 2014. Datahub: Collaborative data science
& dataset version management at scale.
Cited in 10.1.4

[172] Google Inc. Firebase | Google’s Mobile and Web App Development Platform:
https://firebase.google.com/. Accessed: 2024-07-29.
Cited in 10.1.4

[173] Verou, L. 2023. Eigensolutions: composability as the antidote to overfit • Lea
Verou: https://lea.verou.me/blog/2023/eigensolutions/. Accessed: 2024-08-29.
Cited in 10.1.4

Bibliography

323 /324

https://doi.org/10.1007/s00779-016-0960-6
https://doi.org/10.1007/s00779-016-0960-6
https://doi.org/10.1007/s00779-016-0960-6
https://doi.org/10.1145/3411764.3445100
https://doi.org/10.1145/3411764.3445100
https://doi.org/10.1145/3411764.3445100
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

[174] Bryan, P.C. and Nottingham, M. 2013. JavaScript Object Notation (JSON)
Patch. RFC 6902. Internet Engineering Task Force:
https://datatracker.ietf.org/doc/rfc6902. Accessed: 2024-08-29.

10.17487/RFC6902.
Cited in 10.1.4

[175] Letia, M., Preguiça, N. and Shapiro, M. 2009. CRDTs: Consistency without
concurrency control: http://arxiv.org/abs/0907.0929. Accessed: 2024-08-29.
Cited in 10.1.4

[176] Sanchez, D. 2018. Adding sorting and grouping to the Mavo framework for end user
web application authoring (Master’s thesis, Massachusetts Institute of
Technology).
Cited in 10.3

[177] Nardi, B.A. 1993. A Small Matter of Programming: Perspectives on End User
Computing. MIT press.
Cited in 10.4

[178] Jones, S.P., Blackwell, A. and Burnett, M. 2003. A user-centred approach to
functions in Excel. Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming (New York, NY, USA, Aug. 2003), 165–176.

10.1145/944705.944721.
Cited in 10.4.2

[179] Sestoft, P. and Sørensen, J.Z. 2013. Sheet-Defined Functions: Implementation
and Initial Evaluation. End-User Development (Berlin, Heidelberg, 2013), 88–103.

10.1007/978-3-642-38706-7_8.
Cited in 10.4.2

[180] 2023. Accessible Rich Internet Applications (WAI-ARIA) 1.2. W3C:
https://www.w3.org/TR/wai-aria/. Accessed: 2024-08-05.
Cited in 10.6.2

[181] Berners-Lee, T., Bray, T., Connolly, D., Cotton, P., Fielding, R., Jeckle, M., Lilley,
C., Mendelsohn, N., Orchard, D., Walsh, N., and others 2004. Architecture of the
World Wide Web, Volume One: https://www.w3.org/TR/webarch/.
Cited in 10.6.3

Bibliography

324 /324

https://doi.org/10.17487/RFC6902
https://doi.org/10.17487/RFC6902
https://doi.org/10.17487/RFC6902
https://doi.org/10.1145/944705.944721
https://doi.org/10.1145/944705.944721
https://doi.org/10.1145/944705.944721
https://doi.org/10.1007/978-3-642-38706-7_8
https://doi.org/10.1007/978-3-642-38706-7_8
https://doi.org/10.1007/978-3-642-38706-7_8

